Image

Ventricular Tachycardia Mechanisms

Ventricular Tachycardia Mechanisms

Recruiting
18 years and older
All
Phase N/A

Powered by AI

Overview

The purpose of this study is to understand why certain hearts have ventricular arrhythmias and help identify areas of the heart that cause arrhythmias. There is still a significant gap in understanding why ventricular arrhythmias occur. This study will examine the electrical properties of the heart tissue to understand how these arrhythmias occur, and hopefully identify areas that might lead to ventricular arrhythmias. The hope is that studying this might be able to improve outcomes during ventricular tachycardia (VT) ablations.

Description

Ventricular tachycardia (VT) ablation remains the cornerstone treatment for drug refractory VT. Previous studies have reported success rate of VT ablation ranging from 23 to 49%. Despite improvements in mapping and catheter technology, there is a high recurrence rate and numerous patients who fail VT ablation.

Reasons for failure in VT ablation include the inability to identify critical areas of myocardium responsible for VT and hemodynamic instability of VT during mapping. Several studies have attempted to study electrical properties of cardiac tissues to identify potential circuits in sinus rhythm avoid mapping during unstable VT. This includes mapping fractionated electrical potentials, isochronal late activation mapping (ILAM), and ablation of low voltage regions. However, these techniques have yielded modest improvement in success rates with poor specificity of identifying important regions.

Monophasic action potentials (MAP) demonstrate cellular action potential of the myocardium. Recent evidence suggests that changes in MAP morphology can predict sudden cardiac death by ventricular arrhythmias. However, cellular activation has not been studied in VT. The researchers of this study propose that MAP signals can better elucidate electrophysiological characteristics of the myocardium, and thus identify sites critical to VT.

During a standard of care VT ablation, the researchers will use the MAP catheter to study cellular action potential of the ventricular myocardium, which cannot be done on traditional catheters. The design of this catheter is similar to other diagnostic catheters that are currently used for VT ablation. The MAP catheter is a bipolar catheter, two with electrical poles at the distal tip. The catheter is placed on the myocardium (similar to other traditional catheters) and a recording signal is transmitted to the workstation. Using the MAP catheter the will not interrupt or distort any of the standard treatment procedures.

Eligibility

Inclusion Criteria:

  • Diagnosis of ischemic cardiomyopathy
  • Single or dual chamber implantable cardioverter-defibrillator (ICD)

Exclusion Criteria:

  • Non-Ischemic cardiomyopathy
  • Contraindication to catheter ablation
  • Severe peripheral arterial disease or medical condition that prohibit arterial access
  • Ventricular tachycardia (VT) or sudden cardiac arrest (SCA) within 30 days of acute coronary syndrome or within 90 days of coronary revascularization

Study details
    Ventricular Tachycardia

NCT05478213

Emory University

16 October 2025

Step 1 Get in touch with the nearest study center
We have submitted the contact information you provided to the research team at {{SITE_NAME}}. A copy of the message has been sent to your email for your records.
Would you like to be notified about other trials? Sign up for Patient Notification Services.
Sign up

Send a message

Enter your contact details to connect with study team

Investigator Avatar

Primary Contact

  Other languages supported:

First name*
Last name*
Email*
Phone number*
Other language

FAQs

Learn more about clinical trials

What is a clinical trial?

A clinical trial is a study designed to test specific interventions or treatments' effectiveness and safety, paving the way for new, innovative healthcare solutions.

Why should I take part in a clinical trial?

Participating in a clinical trial provides early access to potentially effective treatments and directly contributes to the healthcare advancements that benefit us all.

How long does a clinical trial take place?

The duration of clinical trials varies. Some trials last weeks, some years, depending on the phase and intention of the trial.

Do I get compensated for taking part in clinical trials?

Compensation varies per trial. Some offer payment or reimbursement for time and travel, while others may not.

How safe are clinical trials?

Clinical trials follow strict ethical guidelines and protocols to safeguard participants' health. They are closely monitored and safety reviewed regularly.
Add a private note
  • abc Select a piece of text.
  • Add notes visible only to you.
  • Send it to people through a passcode protected link.