Image

Machine Learning for Handheld Vascular Studies

Machine Learning for Handheld Vascular Studies

Recruiting
All
Phase N/A

Powered by AI

Overview

The use of handheld arterial 'stethoscopes' (continuous wave Doppler devices) are ubiquitous in clinical practice. However, most users have received no formal training in their use or the interpretation of the returned data. This leads to delays in diagnosis and errors in diagnosis.

The investigators intend to create a novel machine-learning algorithm to assist clinicians in the use of this data. This study will allow the investigators to collect sound files from the use of the devices and compare the algorithms output to established, existing vascular testing. There will be no invasive procedures, and use of these stethoscopes is part of routine clinical care.

If successful, this data and algorithm will be later deployed via smartphone app for point of case testing in a separate study

Description

There are three main research tasks for this project: 1) the identification of discriminant features of Doppler audio for patient classification, 2) the selection and training of classification algorithms, and 3) CWD audio data enrichment using physics-based models. The investigators will determine which discriminant features are optimal for patient classification from ultrasound Doppler audio.

To this end, the investigators will employ signal features in the frequency domain such as bandwidth, peak frequency, mean power, mean frequency, and time harmonic distortion, among others.

Furthermore, the investigators will investigate whether time domain features are necessary for accurate sound classification. Other studies have shown that specific features of audio waveforms can classify the data. The investigators will employ some of the most effective machine-learning algorithms for classification such as SVM, logistic regression, and Naïve Bayes, among others. The investigators will start with a binary classification problem in which individuals will be classified as healthy or unhealthy. Then, the investigators will move in complexity to multi-class classification problems in which individuals will be categorized into different groups according to defined abnormal arterial conditions. Data enrichment using physics-based models employing physiologically accurate finite element models of fluid flow in arteries to generate synthetic sound signals corresponding to various arterial conditions. Physics-based simulations would allow the investigators to produce a wealth of training data that can span many known arterial conditions. This capability can augment the classification accuracy and generalization of our algorithms, as clinical data may not be exhaustive enough to incorporate all the known arterial conditions. The investigators will study the performance of the trained algorithms on patient data. To this end, the investigators will partition the data into training and testing samples. The training samples will be used for training of the algorithms, while the testing set will be used to assess generalization capability. The investigators will compute misclassification rates for each algorithm as a metric for performance.

Eligibility

Inclusion Criteria:

  • A clinically driven request for non-invasive vascular testing must be present

Exclusion Criteria:

  • None (other than patient declines to participate)

Study details
    Atherosclerosis
    Wounds and Injuries

NCT02932176

Duke University

16 October 2025

Step 1 Get in touch with the nearest study center
We have submitted the contact information you provided to the research team at {{SITE_NAME}}. A copy of the message has been sent to your email for your records.
Would you like to be notified about other trials? Sign up for Patient Notification Services.
Sign up

Send a message

Enter your contact details to connect with study team

Investigator Avatar

Primary Contact

  Other languages supported:

First name*
Last name*
Email*
Phone number*
Other language

FAQs

Learn more about clinical trials

What is a clinical trial?

A clinical trial is a study designed to test specific interventions or treatments' effectiveness and safety, paving the way for new, innovative healthcare solutions.

Why should I take part in a clinical trial?

Participating in a clinical trial provides early access to potentially effective treatments and directly contributes to the healthcare advancements that benefit us all.

How long does a clinical trial take place?

The duration of clinical trials varies. Some trials last weeks, some years, depending on the phase and intention of the trial.

Do I get compensated for taking part in clinical trials?

Compensation varies per trial. Some offer payment or reimbursement for time and travel, while others may not.

How safe are clinical trials?

Clinical trials follow strict ethical guidelines and protocols to safeguard participants' health. They are closely monitored and safety reviewed regularly.
Add a private note
  • abc Select a piece of text.
  • Add notes visible only to you.
  • Send it to people through a passcode protected link.