Image

Optimizing and Personalising Azacitidine Combination Therapy for Treating Solid Tumours QPOP and CURATE.AI

Optimizing and Personalising Azacitidine Combination Therapy for Treating Solid Tumours QPOP and CURATE.AI

Recruiting
21-99 years
All
Phase 1/2

Powered by AI

Overview

This pilot feasibility study aims to set the foundation to investigate the applicability of QPOP drug selection followed by CURATE.AI-guided dose optimisation of the selected azacitidine combination therapy for solid tumours using CURATE.AI within the current clinical setting.

QPOP will identify drug interactions towards optimal efficacy and cytotoxicity from the pre-specified drug pool based on ex vivo experimental data from the individual participant's tissue sample model. With these drug interactions, QPOP will identify the optimal drugs for the specific participant whose biopsy provided the cells for the ex vivo experimentation. Subsequently, CURATE.AI will be used to guide dosing for the selected combination therapy for that participant.

Individualised CURATE.AI profiles will be generated based on each participant's response to a set of drug doses. Subsequently, the personalised CURATE.AI profile will be used to recommend the efficacy-driven dose. CURATE.AI will operate only within the safety range for each drug pre-specified for each participant.

This pilot feasibility study will inform the investigators on the logistical and scientific feasibility of performing a large-scale randomised controlled trial (RCT) with the selected azacitidine combination therapy regimens and response markers. A secondary objective is to collect toxicity and efficacy data using established and exploratory response markers within and in-between cycles as exploratory outcomes.

Description

Several drug combinations and modulation in drug dosing are given to promote cancer cell elimination in cancer patients. While advances in omics tools have led to greater understanding of the complexity of diseases such as cancer, they have also led to the understanding that large networks of molecular interactions contribute to both disease progression and therapeutic resistance. The rational design of drug combinations is a challenge because complex molecular networks contribute to feedback mechanisms of drug resistance and compensatory oncogenic drivers that limit the efficacy of targeted inhibitors. This challenge is compounded by the vast number of available drugs to identify optimal drug combinations from.

In addition to the complexities in identifying optimal drug combinations, optimal dosing remains a challenge as drug synergy is both dose, time- and patient- dependent. The final drug concentration in the body must fall within a narrow range that maximises cancer elimination while minimizing toxic side effects. The complexity of this task increases significantly with the number of drugs given in combination due to increasing parameters and stochastic behaviour of a biological system. Currently, the established approach is to select maximum tolerated doses (MTD) - the highest drug doses that do not cause unacceptable side effects. Treatment efficacy does not guide dose selection. Combined with limited personalisation, this dosing strategy often results in sub-optimal outcomes of the treatment.

In this pilot feasibility study, participants will undergo QPOP drug selection, a stage of CURATE.AI profile generation, and a stage of CURATE.AI profile-based, efficacy-driven drug dosing.

As there are no prior clinical trial cohorts using CURATE.AI in participants with solid tumours and there are existing data for breast and gastric cancer for input into QPOP, this feasibility pilot study will focus on the practicality and feasibility of using QPOP and CURATE.AI in this clinical context.

At the end of the participation of the first 10 patients, an interim analysis will be conducted using the data generated from these participants, which will include formal power and statistical sample size calculations. Based on these outcomes, the investigators will consider cohort expansion or an RCT. Specifically, the interim analysis will aid the decisions on whether to proceed with future RCTs; their design (superiority, equivalence or non-inferiority); logistical and practical aspects of running a large-scale RCT; patient population selection for the RCT; and potential applicability of CURATE.AI in a wider range of systemic therapy regimens, response markers and/or expansion of the current cohort to elicit further data on secondary endpoints and/or new randomized cohorts.

Although not standard of care treatment for breast and gastric cancer, azacitidine combination therapy is chosen by the investigators as azacitidine combination therapy as azacitidine is a potent DNA methyltransferase inhibitor (DNMT) that can increase the sensitivity of a range of metastatic or advanced solid tumours, such as breast and gastric cancer, to treatment with docetaxel, paclitaxel, or irinotecan after developing resistance. Studies have also demonstrated the possibility of low dose treatment with chemotherapeutic agents when given together with azacitidine. However, cytotoxicity of azacitidine increases with dose and exposure time, which highlights the need to rapidly identify the optimal azacitidine-containing drug combinations and for personalised dose modulation during treatment. As such, QPOP drug selection and CURATE.AI dose modulation pipeline is in the ideal position to optimise treatment with azacitidine in combination with docetaxel, paclitaxel, or irinotecan via a personalised manner to maximise efficacy while minimising toxicities.

Participants will undergo QPOP drugs selection optimisation, and those participants who are identified via QPOP to potentially benefit from azacitidine in combination with docetaxel, paclitaxel, or irinotecan will transition to the CURATE.AI stage of the trial after treatment fails. Participants who have undergone QPOP drug selection (e.g. under QGAIN (2019/00924) or NGAIN trial (2021/00009)) are allowed to enrol for the CURATE.AI modulation period of this study at the approval of the Principal Investigator and Sponsor.

CURATE.AI will facilitate personalised treatment to each of the participants by recommending optimal doses in a dynamic fashion. In this phase, only azacitidine dose in the selected azacitidine combination will be modulated by CURATE.AI. Criteria for recruitment allow a high variability in the participant population to reflect a true variability in the cases faced in the clinical practice.

Eligibility

Inclusion Criteria:

  1. Males and females ≥ 21 years of age.
  2. Eastern Cooperative Oncology Group (ECOG) Performance Status of 0 to 2.
  3. Patients must meet the following clinical laboratory criteria within 21 days of starting treatment:
    1. Absolute neutrophil count (ANC) ≥ 1,000/mm3 and platelet ≥ 50,000/mm3
    2. Total bilirubin ≤ 1.5 x the upper limit of the normal range (ULN). Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) ≤ 3 x ULN of ≤ 5 ULN if involvement of the liver.
    3. Calculated creatinine clearance ≥ 30 mL/min or creatinine < 1.5 x ULN.
  4. Diagnosed with breast or gastric cancer, where docetaxel, paclitaxel or irinotecan

    is indicated for palliative therapy.

  5. Patients who have undergone QPOP drug screen (e.g. under QGAIN (2019/00924) or NGAIN trial (2021/00009) where the drug screen indicated potential benefit of combining azacitidine with taxane or irinotecan.
  6. Patients must have raised response marker above upper limit of local laboratory normal (e.g. CEA and/or CA19-9, CA 15-3, CA 125, AFP, and methylation markers such as but not limited to DNMT).

Exclusion Criteria:

  1. Patients who are lactating or pregnant.
  2. Patients with clinically significant hypersensitivity to one or more of the selected regimen's constituent drug(s) (e.g. patients with clinically significant hypersensitivity to irinotecan may not be enrolled on azacitidine + irinotecan, but may be allowed on azacitidine + paclitaxel or azacitidine + docetaxel).
  3. Contraindication to any of the required concomitant drugs or supportive treatments.
  4. Any clinically significant medical disease or psychiatric condition that, in the co-investigator's opinion, may interfere with protocol adherence or a subject's ability to give informed consent.
  5. Major surgery within 28 days prior to start of the treatment.
  6. Active congestive heart failure (New York Heart Association [NYHA] Class III or IV), symptomatic ischaemia, or conduction abnormalities uncontrolled by conventional intervention. Myocardial infarction within 4 months prior to informed consent obtained.
  7. Patients who previously underwent chemotherapy treatment with either docetaxel, paclitaxel and/or irinotecan may still be able to enrol into treatment with the same drug in combination with azacitidine provided they fulfil all other criteria and approval is sought by PI and Sponsor (e.g. patients previously treated with paclitaxel and are enroling for treatment with paclitaxel + azacitidine).
  8. Patients with clinical suspicion or diagnosis of Gilbert's syndrome will not be allowed to enrol with azacitidine + irinotecan, but may be allowed to enrol for treatment with azacitidine + docetaxel or azacitidine + paclitaxel provided they fulfil all other criteria.

Study details
    Solid Tumor
    Gastrointestinal Cancer
    Breast Cancer

NCT05381038

National University Hospital, Singapore

16 October 2025

Step 1 Get in touch with the nearest study center
We have submitted the contact information you provided to the research team at {{SITE_NAME}}. A copy of the message has been sent to your email for your records.
Would you like to be notified about other trials? Sign up for Patient Notification Services.
Sign up

Send a message

Enter your contact details to connect with study team

Investigator Avatar

Primary Contact

  Other languages supported:

First name*
Last name*
Email*
Phone number*
Other language

FAQs

Learn more about clinical trials

What is a clinical trial?

A clinical trial is a study designed to test specific interventions or treatments' effectiveness and safety, paving the way for new, innovative healthcare solutions.

Why should I take part in a clinical trial?

Participating in a clinical trial provides early access to potentially effective treatments and directly contributes to the healthcare advancements that benefit us all.

How long does a clinical trial take place?

The duration of clinical trials varies. Some trials last weeks, some years, depending on the phase and intention of the trial.

Do I get compensated for taking part in clinical trials?

Compensation varies per trial. Some offer payment or reimbursement for time and travel, while others may not.

How safe are clinical trials?

Clinical trials follow strict ethical guidelines and protocols to safeguard participants' health. They are closely monitored and safety reviewed regularly.
Add a private note
  • abc Select a piece of text.
  • Add notes visible only to you.
  • Send it to people through a passcode protected link.