Image

Assessment of the Prognosis of Pancreatic Cancer Patients Using 3D MRE

Assessment of the Prognosis of Pancreatic Cancer Patients Using 3D MRE

Recruiting
18-80 years
All
Phase N/A

Powered by AI

Overview

Pancreatic ductal adenocarcinoma (PDAC), representing 85-95% of pancreatic cancers, is a highly lethal malignancy with a dismal 5-year survival rate below 8%. Emerging evidence highlights the critical need for non-invasive imaging biomarkers to stratify prognosis and guide therapeutic strategies. Notably, the biomechanical properties of PDAC-associated extracellular matrix (ECM), characterized by extensive interstitial fibrosis, are intrinsically linked to tumorigenesis, progression, and metastatic dissemination. Three-dimensional magnetic resonance elastography (3D-MRE), as an advanced imaging modality, enables precise quantification of tissue shear stiffness in both normal pancreatic parenchyma and neoplastic lesions. Significantly, the biomechanical heterogeneity captured by MRE holds untapped potential to serve as a prognostic biomarker for PDAC. Despite its technical merits, no studies to date have systematically explored MRE-derived imaging signatures in predicting PDAC survival outcomes or therapeutic responses, underscoring a pivotal gap in translational oncology research.

Description

Pancreatic ductal adenocarcinoma (PDAC), constituting 85-95% of pancreatic cancers, ranks among the most lethal malignancies globally, with a dismal 5-year survival rate below 8%. Identifying robust prognostic or predictive biomarkers is critical for risk stratification and prospective therapeutic evaluation in clinical trials. The extracellular matrix (ECM) surrounding PDAC is characterized by extensive interstitial fibrosis, a pathological hallmark intrinsically linked to tumor initiation, progression, and metastatic dissemination. While the ECM exerts dual roles in modulating cancer biology through multifaceted mechanisms, compelling experimental evidence confirms that ECM stiffening in PDAC accelerates tumor aggressiveness and correlates significantly with reduced patient survival. Noninvasive quantification of tumor mechanical properties (e.g., stiffness) prior to treatment could provide critical insights into tumor biology, prognostic stratification, and personalized therapeutic decision-making.

Advanced three-dimensional magnetic resonance elastography (3D-MRE) enables precise, noninvasive mapping of shear stiffness across both healthy pancreatic tissue and neoplastic lesions. Despite its technical promise, the translational potential of MRE-derived imaging biomarkers for predicting PDAC prognosis remains unexplored, with no systematic studies reported domestically or internationally to date.

Eligibility

Inclusion Criteria:

  1. granting of written informed consent
  2. age ≥18 years
  3. no history of extrapancreatic malignancy
  4. no preoperative biliary drainage
  5. definitive histologic evidence of PDAC in excisional biopsy
  6. with no less than three months of postoperative mortality or six months of followup

Exclusion Criteria:

  1. inability to re-review of tissue specimens
  2. unacceptable estimates of MRE parameters, specifically invalid wave data during postprocessing, inconsistent breath-holdings, intolerable pain, and MRE hardware disconnection
  3. tumor diameters <1.0 cm
  4. withdrawal/dropout during follow-up

Study details
    Pancreatic Cancer

NCT06849063

Yu Shi

16 October 2025

Step 1 Get in touch with the nearest study center
We have submitted the contact information you provided to the research team at {{SITE_NAME}}. A copy of the message has been sent to your email for your records.
Would you like to be notified about other trials? Sign up for Patient Notification Services.
Sign up

Send a message

Enter your contact details to connect with study team

Investigator Avatar

Primary Contact

  Other languages supported:

First name*
Last name*
Email*
Phone number*
Other language

FAQs

Learn more about clinical trials

What is a clinical trial?

A clinical trial is a study designed to test specific interventions or treatments' effectiveness and safety, paving the way for new, innovative healthcare solutions.

Why should I take part in a clinical trial?

Participating in a clinical trial provides early access to potentially effective treatments and directly contributes to the healthcare advancements that benefit us all.

How long does a clinical trial take place?

The duration of clinical trials varies. Some trials last weeks, some years, depending on the phase and intention of the trial.

Do I get compensated for taking part in clinical trials?

Compensation varies per trial. Some offer payment or reimbursement for time and travel, while others may not.

How safe are clinical trials?

Clinical trials follow strict ethical guidelines and protocols to safeguard participants' health. They are closely monitored and safety reviewed regularly.
Add a private note
  • abc Select a piece of text.
  • Add notes visible only to you.
  • Send it to people through a passcode protected link.