Overview
Two recently developed artificial intelligence-enabled electrocardiogram (AI-ECG) models have been developed to detect aortic stenosis (AS) and diastolic dysfunction (DD). AI-ECG for AS has a sensitivity of 78% and specificity of 74%, and AI-ECG for DD has a sensitivity of 83% and specificity of 80%. However, these models have never been prospectively applied to diagnose AS or DD, which may be useful for patients and providers from a diagnostic and prognostic perspective and especially in settings where access to higher- level medical care is limited. In this study, we aim to determine the clinical utility of these AI-ECG models by prospectively applying them to an outpatient cohort and then completing a focused point-of-care ultrasound to evaluate those who are AI-ECG positive for AS and DD.
Eligibility
Inclusion Criteria:
- ≥ 60 years of age must have a clinical scheduled ECG performed.
Exclusion Criteria:
- < 59 years of age
- Is not scheduled for a clinical ECG
- Unable to provide consent.