Image

BRAIN-HEART Ultrasound Study Normative Values for Transcranial Doppler Based Cerebral Blood Flow Assessment

BRAIN-HEART Ultrasound Study Normative Values for Transcranial Doppler Based Cerebral Blood Flow Assessment

Recruiting
18 years and older
All
Phase N/A

Powered by AI

Overview

There is a dire need to establish normative values for transcranial Doppler(TCD) derived cerebral blood flow parameters for each type of Mechanical circulatory support (MCS) device and explore the relationship between the MCS device's systemic flow dynamics and TCD based cerebral flow(CBF) parameters TCD derived cerebral blood flow parameters can then be investigated as targets used to titrate systemic flow dynamics from MCS. Having target flow rates titrated to patient specific condition using TCD may help avoid both hypoperfusion as well as the possibility of hyperemia reperfusion injury contributing to neurological morbidity. We propose a multicenter study to gather normative data on TCD derived CBF and MCS systemic dynamics for a wide range of patient demographics. Such data collection is only possible with multi-center collaboration given the small volume of patients with MCS patients in each center.

Description

The Mechanical circulatory support (MCS) devices are temporary devices that enable complete and immediate cardiopulmonary support in settings of cardiac arrest and cardiogenic shock. The different MCS devices differ in their operating principles and generate different systemic flow patterns (pulsatile vs non- pulsatile, flow volumes, Peak flow rates, and PI). Researchers have studied different MCS devices like VA Extra Corporeal Mebrane Oxygenation(ECMO), left ventricular assist device (LVAD), and Impella and their effect on cerebral flow and complication profiles using various neuromonitoring techniques including TCD . Most such studies were small single-center studies that added to the understanding of different flow rates and characteristics with different MCS devices but were not adequately powered or designed to establish normative values of TCD derived CBF measures in this special population. There is a dire need to establish normative values for each type of MCS device and explore the relationship between the MCS device's systemic flow dynamics and TCD derived cerebral flow. These normative values then can be used to assess the association of TCD derived CBF patterns with occurrence of neurological complications related to abnormal CBF in patients receiving MCS devices and advice on patient specific MCS parameters titrated using TCD derived parameters. Having target flow rates in MCS patients will help avoid both hypoperfusion as well as the possibility of hyperemia reperfusion injury contributing to neurological morbidity. Such data collection is only possible with multi-center collaboration given the small volume of patients with MCS patients in each center.

Eligibility

Inclusion Criteria:

  • >18 years old on the day of enrollment
  • Mechanical circulatory support
    1. Left Ventricular Assist Device [HeartMate-III] in antegrade flow i. Critically ill ii. With and without pulsatility b. Impella antegrade flow c. VA-ECMO (VA-ECMO) is a temporary mechanical circulatory support system that enables complete and immediate cardiopulmonary support in the setting of cardiogenic shock and cardiac arrest) retrograde flow usual with femoral cannulation or antegrade flow if centrally cannulated
  • Patient must be in the intensive care unit or in patient for the intervention to be

    performed

Exclusion Criteria:

  • Known cerebrovascular disease or know angiographic abnormalities based on preexisting computed tomography angiography, digital subtraction angiography or transcranial Doppler prior to this hospitalization that will significantly affect Transcranial Doppler (TCD) parameters. Patients with abnormalities not likely to affect TCD parameters or known normal TCDs despite abnormal cerebral hemodynamic studies will still be included
  • Pre-Existing neurological deficits impairing quality of life
  • Absence of temporal windows
  • Presence of skull defects that may affect the feasibility of TCD windows
  • Co-existing dialysis or other forms of renal replacement therapy
  • Pregnant patients
  • Patients on palliative care pathway awaiting de-escalation
  • Patient on comfort care

Study details
    Mechanical Circulatory Support

NCT05924503

Wake Forest University Health Sciences

15 October 2025

Step 1 Get in touch with the nearest study center
We have submitted the contact information you provided to the research team at {{SITE_NAME}}. A copy of the message has been sent to your email for your records.
Would you like to be notified about other trials? Sign up for Patient Notification Services.
Sign up

Send a message

Enter your contact details to connect with study team

Investigator Avatar

Primary Contact

  Other languages supported:

First name*
Last name*
Email*
Phone number*
Other language

FAQs

Learn more about clinical trials

What is a clinical trial?

A clinical trial is a study designed to test specific interventions or treatments' effectiveness and safety, paving the way for new, innovative healthcare solutions.

Why should I take part in a clinical trial?

Participating in a clinical trial provides early access to potentially effective treatments and directly contributes to the healthcare advancements that benefit us all.

How long does a clinical trial take place?

The duration of clinical trials varies. Some trials last weeks, some years, depending on the phase and intention of the trial.

Do I get compensated for taking part in clinical trials?

Compensation varies per trial. Some offer payment or reimbursement for time and travel, while others may not.

How safe are clinical trials?

Clinical trials follow strict ethical guidelines and protocols to safeguard participants' health. They are closely monitored and safety reviewed regularly.
Add a private note
  • abc Select a piece of text.
  • Add notes visible only to you.
  • Send it to people through a passcode protected link.