Image

Strength and Plyometric Training in Swimming

Strength and Plyometric Training in Swimming

Recruiting
10-17 years
All
Phase N/A

Powered by AI

Overview

A total of 18 participants are planned to be included in the study. Participants will be randomly assigned into two groups in the order of their arrival. One group will perform strength exercises in addition to standard swim training (strength group), while the other group will perform plyometric exercises in addition to standard swim training (plyometric group). Both groups will participate in two training sessions per week for a duration of 8 weeks. The 50m sprint biomechanics, stroke frequency, or overall performance will be evaluated before and after the intervention.

Description

In sprint swimming events such as the 50-meter race, the ability to generate explosive power and maintain efficient biomechanics is critical for achieving peak performance. Plyometric training, particularly progressive bounding and long jump exercises, has been shown to effectively enhance the kinetic and kinematic parameters essential for swimming starts. This form of training plays a key role in sprint events that demand rapid propulsion, as it conditions the neuromuscular system to produce power quickly. As such, plyometric exercises directly contribute to improved initial push-off phases and overall sprint performance in short-distance swimming.

Similarly, strength training has a significant role in improving stroke length and stroke frequency. Low-volume, high-speed, and high-force strength training programs are particularly effective in transferring gains to swimming-specific mechanics. These improvements enhance stroke efficiency and power output, resulting in improved performance outcomes. In young swimmers, land-based strength and conditioning programs have demonstrated improvements in biomechanics, enabling swimmers to maintain higher speeds over 50 meters with minimal energy loss and more powerful strokes.

Collectively, these findings suggest that integrating plyometric and strength training into the training programs of young swimmers may yield beneficial effects on sprint biomechanics and overall performance. The current study aims to investigate the comparative effects of these two training modalities-plyometric and strength training-on 50-meter sprint performance and biomechanics in young swimmers. The results are expected to offer valuable insights into optimal conditioning strategies that support athletic development in competitive swimming.

Hypotheses

Null Hypothesis (H₀): There is no significant difference in 50-meter sprint biomechanics, stroke frequency, or overall performance between young swimmers who undergo plyometric training in addition to swim training and those who undergo strength training in addition to swim training.

Alternative Hypothesis (H₁): There is a significant difference in 50-meter sprint biomechanics, stroke frequency, or overall performance between young swimmers who undergo plyometric training in addition to swim training and those who undergo strength training in addition to swim training.

Objectives

To determine the chronic effects of plyometric training, in addition to regular swim training, on sprint biomechanics in young swimmers.

To evaluate the effects of strength training, in addition to regular swim training, on sprint biomechanics in young swimmers.

To compare developments in stroke frequency between the plyometric and strength training groups.

To examine the overall changes in 50-meter sprint performance in both training groups over the eight-week training period.

Eligibility

Inclusion Criteria Being between 10 and 17 years old, Having at least 3 years of competitive experience, Having participated in at least one Qualifying Standards competition before, Being willing to participate in the study, Obtained parental consent.

Exclusion Criteria:

Presence of a health condition requiring regular medical check-ups (e.g., cardiovascular, respiratory, or musculoskeletal disorders).

Study details
    Sport Performance
    Biomechanics
    Plyometric Exercises
    Strength Training Effects
    Swimming

NCT07096492

Istinye University

15 October 2025

Step 1 Get in touch with the nearest study center
We have submitted the contact information you provided to the research team at {{SITE_NAME}}. A copy of the message has been sent to your email for your records.
Would you like to be notified about other trials? Sign up for Patient Notification Services.
Sign up

Send a message

Enter your contact details to connect with study team

Investigator Avatar

Primary Contact

  Other languages supported:

First name*
Last name*
Email*
Phone number*
Other language

FAQs

Learn more about clinical trials

What is a clinical trial?

A clinical trial is a study designed to test specific interventions or treatments' effectiveness and safety, paving the way for new, innovative healthcare solutions.

Why should I take part in a clinical trial?

Participating in a clinical trial provides early access to potentially effective treatments and directly contributes to the healthcare advancements that benefit us all.

How long does a clinical trial take place?

The duration of clinical trials varies. Some trials last weeks, some years, depending on the phase and intention of the trial.

Do I get compensated for taking part in clinical trials?

Compensation varies per trial. Some offer payment or reimbursement for time and travel, while others may not.

How safe are clinical trials?

Clinical trials follow strict ethical guidelines and protocols to safeguard participants' health. They are closely monitored and safety reviewed regularly.
Add a private note
  • abc Select a piece of text.
  • Add notes visible only to you.
  • Send it to people through a passcode protected link.