Image

Developing a New Metabolic Imaging Approach (aMRI) for Evaluating Neurological Disease in Patients With Gliomas

Developing a New Metabolic Imaging Approach (aMRI) for Evaluating Neurological Disease in Patients With Gliomas

Recruiting
18 years and older
All
Phase N/A

Powered by AI

Overview

This is an observational study to compare the utility of the novel aMRI approach in human brain to the standard of care imaging approach for diagnosing and assessing glioma. Tumor cells have altered metabolism compared to normal cells.This makes metabolic activity imaging useful for diagnosing and assessing neurological disease. However, current options for metabolic activity imaging are limited. Metabolic activity imaging is primarily conducted using positron emission tomography (PET) with a radioactive tracer called fludeoxyglucose F-18 (¹⁸FDG). A PET scan is a procedure in which a small amount of radioactive glucose (¹⁸FDG) is injected into a vein, and a scanner is used to make detailed, computerized pictures of areas inside the body where the glucose is taken up. PET imaging is very expensive and is usually much less available than other imaging techniques such as magnetic resonance imaging (MRI). MRI uses radiofrequency waves and a strong magnetic field to provide clear and detailed pictures of internal organs and tissues. While MRI is more available than PET, it isn't as useful in evaluating metabolic activity. Unlike standard MRI, the aMRI approach uses new ways of analyzing MRI images that provides information about tumor cell metabolic activity. Via direct comparison with a standard metabolic imaging approach, ¹⁸FDG PET, this clinical trial will assess the validity of aMRI as a metabolic imaging approach for evaluating neurological disease in patients with glioma.

Description

PRIMARY OBJECTIVE:

I. Characterize how the metabolic aMRI parameter kᵢₒ*V differs in tumor versus (vs) normal brain. Researchers will assess the validity of aMRI as a metabolic imaging approach via direct comparison with a standard metabolic imaging approach, ¹⁸FDG PET.

SECONDARY OBJECTIVES:

I. Post-gadolinium (Gd) T1 MRI will be used to distinguish the contrast-enhancing "ring" region indicating the metabolically active tumor periphery from the less viable and/or necrotic tumor core. The utility of aMRI to differentially assess the metabolically active tumor periphery and necrotic core regions will be determined and compared to that of ¹⁸FDG PET (SUVmax).

II. Characterize how the metabolic aMRI parameter kᵢₒ*V differs in the various normal appearing brain sub-regions unaffected by tumor, in comparison to ¹⁸FDG PET.

EXPLORATORY OBJECTIVE:

I. To compare how the aMRI metabolic parameter kᵢₒ*V within disease lesions change with different disease types, their disease stage, and their treatment status.

OUTLINE

Patients receive ¹⁸FDG IV, then 60 minutes later undergo simultaneous MRI and PET scanning. During this scanning period, patients will receive gadoterate meglumine IV to obtain post-contrast MRI. Total scanning time will take 45-60 minutes.

Eligibility

Inclusion Criteria:

  • Adult patients (greater than 18 years of age) with glioma who require MRI and ¹⁸FDG-PET imaging.

Study details
    Glioma

NCT05937776

OHSU Knight Cancer Institute

15 October 2025

Step 1 Get in touch with the nearest study center
We have submitted the contact information you provided to the research team at {{SITE_NAME}}. A copy of the message has been sent to your email for your records.
Would you like to be notified about other trials? Sign up for Patient Notification Services.
Sign up

Send a message

Enter your contact details to connect with study team

Investigator Avatar

Primary Contact

  Other languages supported:

First name*
Last name*
Email*
Phone number*
Other language

FAQs

Learn more about clinical trials

What is a clinical trial?

A clinical trial is a study designed to test specific interventions or treatments' effectiveness and safety, paving the way for new, innovative healthcare solutions.

Why should I take part in a clinical trial?

Participating in a clinical trial provides early access to potentially effective treatments and directly contributes to the healthcare advancements that benefit us all.

How long does a clinical trial take place?

The duration of clinical trials varies. Some trials last weeks, some years, depending on the phase and intention of the trial.

Do I get compensated for taking part in clinical trials?

Compensation varies per trial. Some offer payment or reimbursement for time and travel, while others may not.

How safe are clinical trials?

Clinical trials follow strict ethical guidelines and protocols to safeguard participants' health. They are closely monitored and safety reviewed regularly.
Add a private note
  • abc Select a piece of text.
  • Add notes visible only to you.
  • Send it to people through a passcode protected link.