Image

The Role of Cognition in Motor Learning After Stroke

The Role of Cognition in Motor Learning After Stroke

Recruiting
40-75 years
All
Phase N/A

Powered by AI

Overview

Stroke leads to lasting problems in using the upper limb (UL) for everyday life activities. While rehabilitation programs depend on motor learning, UL recovery is less than ideal. Implicit learning is thought to lead to better outcomes than explicit learning. Cognitive factors (e.g., memory, attention, perception), essential to implicit motor learning, are often impaired in people with stroke. The objective of this study is to investigate the role of cognitive deficits on implicit motor learning in people with stroke. The investigators hypothesize that 1) subjects with stroke will achieve better motor learning when training with additional intrinsic feedback compared to those who train without additional intrinsic feedback, and 2) individuals with stroke who have cognitive deficits will have impairments in their ability to use feedback to learn a motor skill compared to individuals with stroke who do not have cognitive deficits.

A recent feedback modality, called error augmentation (EA), can be used to enhance motor learning by providing subjects with magnified motor errors that the nervous system can use to adapt performance. The investigators will use a custom-made training program that includes EA feedback in a virtual reality (VR) environment in which the range of the UL movement is related to the patient's specific deficit in the production of active elbow extension. An avatar depiction of the arm will include a 15 deg elbow flexion error to encourage subjects to increase elbow extension beyond the current limitations. Thus, the subject will receive feedback that the elbow has extended less than it actually has and will compensate by extending the elbow further. Subjects will train for 30 minutes with the EA program 3 times a week for 9 weeks. Kinematic and clinical measures will be recorded before, after 3 weeks, after 6 weeks, and after 9 weeks. Four weeks after the end of training, there will be a follow-up evaluation. Imaging scans will be done to determine lesion size and extent, and descending tract integrity with diffusion tensor imaging (DTI).

This study will identify if subjects with cognitive deficits benefit from individualized training programs using enhanced intrinsic feedback. The development of treatments based on mechanisms of motor learning can move rehabilitation therapy in a promising direction by allowing therapists to design more effective interventions for people with problems using their upper limb following a stroke.

Eligibility

Inclusion Criteria:

  • Sustained a first cortical/sub-cortical ischemic/hemorrhagic stroke less than 3 years previously and are medically stable.
  • Are no longer receiving treatment.
  • Normal or corrected-to-normal vision.
  • Have arm paresis (Chedoke-McMaster Arm Scale 2-6/7) and spasticity (Modified Ashworth Scale ≥ 1/4) but can voluntarily flex/extend the elbow to approximately 30 degrees in each direction.

Exclusion Criteria:

  • Other major neurological or musculoskeletal problems that may interfere with task performance.
  • Marked elbow proprioceptive deficits (<6/12 Fugl-Meyer UL sensation scale) that may interfere with elbow position perception.
  • Visuospatial neglect (Line Bisection Test deviation > 6 mm).
  • Uncorrected vision.
  • Depression (≥ 14 Beck Depression Inventory II).

Study details
    Stroke Hemorrhagic
    Stroke
    Ischemic
    Cognitive Impairment

NCT05268861

McGill University

15 October 2025

Step 1 Get in touch with the nearest study center
We have submitted the contact information you provided to the research team at {{SITE_NAME}}. A copy of the message has been sent to your email for your records.
Would you like to be notified about other trials? Sign up for Patient Notification Services.
Sign up

Send a message

Enter your contact details to connect with study team

Investigator Avatar

Primary Contact

  Other languages supported:

First name*
Last name*
Email*
Phone number*
Other language

FAQs

Learn more about clinical trials

What is a clinical trial?

A clinical trial is a study designed to test specific interventions or treatments' effectiveness and safety, paving the way for new, innovative healthcare solutions.

Why should I take part in a clinical trial?

Participating in a clinical trial provides early access to potentially effective treatments and directly contributes to the healthcare advancements that benefit us all.

How long does a clinical trial take place?

The duration of clinical trials varies. Some trials last weeks, some years, depending on the phase and intention of the trial.

Do I get compensated for taking part in clinical trials?

Compensation varies per trial. Some offer payment or reimbursement for time and travel, while others may not.

How safe are clinical trials?

Clinical trials follow strict ethical guidelines and protocols to safeguard participants' health. They are closely monitored and safety reviewed regularly.
Add a private note
  • abc Select a piece of text.
  • Add notes visible only to you.
  • Send it to people through a passcode protected link.