Image

Effectiveness of Ventilation Modes in Intensive Care: A Comparison of Mandatory Minute Ventilation and Synchronized Intermittant Mandatory Ventilation Using Bioelectrical Impedance Tomography

Effectiveness of Ventilation Modes in Intensive Care: A Comparison of Mandatory Minute Ventilation and Synchronized Intermittant Mandatory Ventilation Using Bioelectrical Impedance Tomography

Recruiting
18 years and older
All
Phase N/A

Powered by AI

Overview

Synchronized Intermittent Mandatory Ventilation (SIMV) is a commonly used ventilatory mode available in many modern ventilators, frequently applied in intensive care units for patients requiring invasive mechanical ventilation. SIMV delivers a preset tidal volume or pressure at a predetermined respiratory rate and synchronizes with the patient's spontaneous breathing efforts, thereby enhancing patient-ventilator interaction and contributing to rehabilitation.

Mandatory Minute Ventilation (MMV) is a hybrid mode combining features of SIMV and Pressure Support Ventilation (PSV), guaranteeing a preset minute ventilation (tidal volume × respiratory rate). It synchronizes support based on the patient's spontaneous efforts and compensates in cases of insufficient minute ventilation.

Electrical Impedance Tomography (EIT) is a non-invasive, radiation-free imaging technique that enables real-time monitoring of pulmonary ventilation and perfusion by applying alternating electrical currents through surface electrodes. EIT has demonstrated strong correlation with findings from computed tomography, nitrogen washout, PET, and SPECT imaging modalities.

This study aims to evaluate the effectiveness of MMV compared to SIMV in mechanically ventilated, hemodynamically stable adult patients (>18 years old) in the intensive care unit. Patients must not require vasopressors, have a FiO₂ ≤ 60%, PEEP ≤ 8 cmH₂O, or receive neuromuscular blocking agents.

Patients will be monitored under both SIMV and MMV modes, separated by a 12-hour interval. To minimize carry-over effects, a one-hour washout period will be implemented before data collection with EIT. Key parameters including PO₂/FiO₂ ratio, PaCO₂, and EtCO₂ will be assessed. The sequence of ventilatory mode application will follow a crossover study design.

Description

Synchronized Intermittent Mandatory Ventilation (SIMV) and Mandatory Minute Ventilation (MMV) are two established modes of mechanical ventilation commonly used in intensive care settings. SIMV delivers a fixed number of breaths with preset tidal volume or pressure, while allowing the patient to breathe spontaneously between mandatory breaths, enhancing patient-ventilator synchrony. MMV combines features of SIMV and Pressure Support Ventilation (PSV), ensuring a target minute ventilation by supplementing spontaneous efforts when necessary.

Electrical Impedance Tomography (EIT) is a non-invasive, radiation-free imaging modality that provides real-time monitoring of regional lung ventilation and perfusion through surface electrodes. EIT has been validated against conventional imaging and monitoring methods including computed tomography, nitrogen washout, PET, and SPECT. It enables continuous bedside evaluation of ventilation distribution, making it particularly useful for guiding mechanical ventilation strategies in critically ill patients.

This prospective, single-center, crossover study aims to evaluate the effectiveness and physiological impact of MMV compared to SIMV in adult ICU patients who are hemodynamically stable but require mechanical ventilation due to various non-neuromuscular reasons. Inclusion criteria require patients to be over 18 years old, not on vasopressor therapy, with FiO₂ ≤ 60%, and without the need for high PEEP (>8 cmH₂O) or neuromuscular blockade.

Each patient will be ventilated with both SIMV and MMV modes for 12 hours each, with the order of modes randomized using a crossover design. To eliminate carry-over effects, a one-hour washout period will be implemented between mode transitions. During each ventilation mode, EIT will be used to assess real-time regional ventilation distribution. Additionally, gas exchange parameters including PO₂/FiO₂ ratio, PaCO₂, and EtCO₂ will be recorded. The primary objective is to determine whether MMV offers comparable or superior ventilation distribution and gas exchange compared to SIMV in this specific patient population.

Eligibility

Inclusion Criteria:

  • Age ≥ 18 years

Intubated and receiving invasive mechanical ventilation

Hemodynamically stable (no vasopressor support)

FiO₂ ≤ 60%

PEEP ≤ 8 cmH₂O

Not receiving neuromuscular blocking agents

Able to tolerate switching between SIMV and MMV modes

Exclusion Criteria:

Pregnant or breastfeeding patients

Patients with neuromuscular diseases affecting respiratory drive

Unstable hemodynamics or ongoing need for vasopressors

Patients requiring high PEEP (>8 cmH₂O)

Patients with DNR (do not resuscitate) status

Participation in another interventional study

-

Study details
    Ventilation Modes
    Mechanical Ventilation
    Critical Illness
    Respiratory Support
    Intensive Care Unit (ICU) Patients
    Mechanical Ventilation Dependence
    Evaluation of Mechanical Ventilation Modes (SIMV and MMV) in Adult Intensive Care Unit Patients Using Electrical Impedance Tomography

NCT06961227

Harran University

15 October 2025

Step 1 Get in touch with the nearest study center
We have submitted the contact information you provided to the research team at {{SITE_NAME}}. A copy of the message has been sent to your email for your records.
Would you like to be notified about other trials? Sign up for Patient Notification Services.
Sign up

Send a message

Enter your contact details to connect with study team

Investigator Avatar

Primary Contact

  Other languages supported:

First name*
Last name*
Email*
Phone number*
Other language

FAQs

Learn more about clinical trials

What is a clinical trial?

A clinical trial is a study designed to test specific interventions or treatments' effectiveness and safety, paving the way for new, innovative healthcare solutions.

Why should I take part in a clinical trial?

Participating in a clinical trial provides early access to potentially effective treatments and directly contributes to the healthcare advancements that benefit us all.

How long does a clinical trial take place?

The duration of clinical trials varies. Some trials last weeks, some years, depending on the phase and intention of the trial.

Do I get compensated for taking part in clinical trials?

Compensation varies per trial. Some offer payment or reimbursement for time and travel, while others may not.

How safe are clinical trials?

Clinical trials follow strict ethical guidelines and protocols to safeguard participants' health. They are closely monitored and safety reviewed regularly.
Add a private note
  • abc Select a piece of text.
  • Add notes visible only to you.
  • Send it to people through a passcode protected link.