Image

Imaging Core Aim 2, and Udall Project 2 Aim 2

Imaging Core Aim 2, and Udall Project 2 Aim 2

Recruiting
21 years and older
All
Phase N/A

Powered by AI

Overview

More than one million people in the United States have Parkinson's disease (PD) and the prevalence is expected to double by 2040. Over 60% of these individuals will develop debilitating postural instability and gait disturbances (PIGD), including freezing of gait (FOG). With disease progression, axial motor symptoms typically become resistant to dopamine replacement therapies (e.g. levodopa) and a primary source of disability and morbidity. While subthalamic (STN) and globus pallidus internus (GPi) deep brain stimulation (DBS) using standard locations and stimulation parameters can be highly effective for the treatment of the cardinalmotorsymptomsof PD, both treatments often fail to control levodopa-resistant motor features of PD such as PIGD. DBS can also impair cognitive function which further exacerbates PIGD, particularly when the task requires attentional resources. Thus, despite considerable improvements in appendicular bradykinesia, rigidity and tremor with conventional DBS, the disease can continue to be dominated by PIGD, leading to increased falls, decreased mobility, and increased rate of hospitalization and morbidity. This is why one of the top NINDS priorities for clinical research in PD is the development of novel therapeutic approaches, such as DBS targeting, to treat levodopa-resistant motor symptoms.

This study will provide crucial information to elucidate the functional properties of the networks involved in Deep Brain Stimulation (DBS) treatment. By refining our understanding of the neural networks involved in stimulation of DBS targets, we will improve our ability to program patients to enhance their clinical outcomes and minimize side effects.

Eligibility

Inclusion Criteria:

  • Age 21 and up
  • Implanted with MR-compatible DBS device (Medtronic Percept/Percept RC DBS System) for treatment of Parkinson's disease
  • English speaking

Exclusion Criteria:

  • Unable to consent for themselves
  • Implanted with a DBS device that is not MR compatible
  • Pregnant
  • Extreme claustrophobia
  • Any contraindications for MRI

Study details
    Parkinson Disease

NCT06998303

University of Minnesota

15 October 2025

Step 1 Get in touch with the nearest study center
We have submitted the contact information you provided to the research team at {{SITE_NAME}}. A copy of the message has been sent to your email for your records.
Would you like to be notified about other trials? Sign up for Patient Notification Services.
Sign up

Send a message

Enter your contact details to connect with study team

Investigator Avatar

Primary Contact

  Other languages supported:

First name*
Last name*
Email*
Phone number*
Other language

FAQs

Learn more about clinical trials

What is a clinical trial?

A clinical trial is a study designed to test specific interventions or treatments' effectiveness and safety, paving the way for new, innovative healthcare solutions.

Why should I take part in a clinical trial?

Participating in a clinical trial provides early access to potentially effective treatments and directly contributes to the healthcare advancements that benefit us all.

How long does a clinical trial take place?

The duration of clinical trials varies. Some trials last weeks, some years, depending on the phase and intention of the trial.

Do I get compensated for taking part in clinical trials?

Compensation varies per trial. Some offer payment or reimbursement for time and travel, while others may not.

How safe are clinical trials?

Clinical trials follow strict ethical guidelines and protocols to safeguard participants' health. They are closely monitored and safety reviewed regularly.
Add a private note
  • abc Select a piece of text.
  • Add notes visible only to you.
  • Send it to people through a passcode protected link.