Image

Blood Flow Conditions and Sounds in AVFs

Blood Flow Conditions and Sounds in AVFs

Recruiting
18-90 years
All
Phase N/A

Powered by AI

Overview

This is a prospective non-pharmacological interventional study aimed at investigating the relationship between the blood flow condition and the arteriovenous fistula (AVF) sound, with the ultimate aim of predicting the AVF clinical, in patients with end-stage renal disease (ESRD) who require the creation of a vascular access for extracorporeal circulation.

Description

The native arteriovenous fistula (AVF) is the lifeline for patients on hemodialysis treatment, but it is still affected by high non-maturation and early failure rates, requiring in most of the cases, the creation of a new vascular access.

Despite the exact mechanism underlying stenosis development and consequent AVF failure remains tentative, there is a general consensus that hemodynamic conditions play a key role. The hemodynamic conditions can be studied using computational fluid dynamic simulations (CFD), advanced computational techniques that allow to simulate blood flowing in virtual 3D models generated from medical images. The current gold standard in the clinical studies with CFD is to obtain reliable 3D AVF models from non-contrast enhanced MRI and our group developed a novel MRI protocol for this purpose. However, recent studies performed by other groups suggest that US technique can also provide accurate and reliable models and the hit on the market, and the tUS Piur Device, which was recently made available to the investigators' research group, offers new avenues for non-invasive and inexpensive 3D patient-specific AVF model generation. Previous computational fluid dynamics investigations inside patient-specific AVF models conducted by the investigators revealed transitional turbulent-like flow in the vein. In particular, the investigators evaluated the venous surface areas occupied by high values of the Oscillatory Shear Index (OSI), a well-accepted hemodynamic metric for the identification of disturbed flow conditions, and they found that wide areas of the venous segment of AVFs are characterized by OSI > 0.1. More recently, by using fluid structure interaction simulations, the investigators have shown that such turbulent-like blood flow conditions cause the venous wall to vibrate at high frequencies and that wall vibrations phenotypically collocate with typical regions of stenosis formation. The investigators' hypothesis is that flow-induced vibrations are transmitted to the skin surface of the patient and then result in those palpable thrills and audible bruits that, over the years, nurses and nephrologists got used to qualitatively evaluate using their stethoscopes. However, up to now sound evaluation has only been qualitative and therefore very subjective, but it may provide a strong indication of aberrant hemodynamic conditions and could have a potential as a non-invasive and unexpensive surveillance method.

Therefore, studies aimed at clarifying the relationship between the blood flow conditions and the AVF sound will help advancing the knowledge in the field, providing indications on the role of hemodynamics in AVF failure and bringing out novel methods such as sound analysis for AVF surveillance.

Eligibility

Inclusion Criteria:

  • Provision of informed consent prior to any study specific procedures.
  • Female and/or male aged between 18 and 90 years.
  • Patients in HD treatment who need a new VA or patients who entered the pre-dialysis program because of ESRD. In all cases, the first-choice treatment is the surgical creation of an autogenous AVF in patient's forearm.

Exclusion Criteria:

  • Contraindications for the creation of an autogenous AVF.
  • Presence of a previously failed AVF in the same arm selected for surgery.
  • Patients with contraindications to MRI including: pregnancy, claustrophobia, cardiac pacemakers or other MRI-incompatible prostheses.
  • Patients already on HD treatment through a catheter or a graft.
  • Patients undergoing peritoneal dialysis.
  • Patients with a life expectancy of less than 2 years.

Study details
    End Stage Renal Disease

NCT06411353

Mario Negri Institute for Pharmacological Research

15 October 2025

Step 1 Get in touch with the nearest study center
We have submitted the contact information you provided to the research team at {{SITE_NAME}}. A copy of the message has been sent to your email for your records.
Would you like to be notified about other trials? Sign up for Patient Notification Services.
Sign up

Send a message

Enter your contact details to connect with study team

Investigator Avatar

Primary Contact

  Other languages supported:

First name*
Last name*
Email*
Phone number*
Other language

FAQs

Learn more about clinical trials

What is a clinical trial?

A clinical trial is a study designed to test specific interventions or treatments' effectiveness and safety, paving the way for new, innovative healthcare solutions.

Why should I take part in a clinical trial?

Participating in a clinical trial provides early access to potentially effective treatments and directly contributes to the healthcare advancements that benefit us all.

How long does a clinical trial take place?

The duration of clinical trials varies. Some trials last weeks, some years, depending on the phase and intention of the trial.

Do I get compensated for taking part in clinical trials?

Compensation varies per trial. Some offer payment or reimbursement for time and travel, while others may not.

How safe are clinical trials?

Clinical trials follow strict ethical guidelines and protocols to safeguard participants' health. They are closely monitored and safety reviewed regularly.
Add a private note
  • abc Select a piece of text.
  • Add notes visible only to you.
  • Send it to people through a passcode protected link.