Image

Genotyping of Ebus-tbna Supernant Cell-free Dna in Nsclc

Genotyping of Ebus-tbna Supernant Cell-free Dna in Nsclc

Recruiting
18-65 years
All
Phase N/A

Powered by AI

Overview

The wide uptake of "liquid biopsy" diagnostics in the care of advanced cancer patients highlights the desire for improved access to tumor allowing accurate tumor genotyping (1). Genotyping of plasma cfDNA is now routine for detection of EGFR driver mutations at diagnosis of NSCLC, or for detection of the EGFR T790M mutation after TKI resistance, and is an emerging approach for the detection of other drivers (HER2 or BRAF mutations, ALK or ROS1 fusions...) (2) or the estimation of tumor mutation burden (TMB) (3). However, the most sensitive plasma genotyping platforms still have a sensitivity of only 70%-80%, such that a negative result requires tissue biopsy confirmation.

Description

The wide uptake of "liquid biopsy" diagnostics in the care of advanced cancer patients highlights the desire for improved access to tumor allowing accurate tumor genotyping (1). Genotyping of plasma cfDNA is now routine for detection of EGFR driver mutations at diagnosis of NSCLC, or for detection of the EGFR T790M mutation after TKI resistance, and is an emerging approach for the detection of other drivers (HER2 or BRAF mutations, ALK or ROS1 fusions...) (2) or the estimation of tumor mutation burden (TMB) (3). However, the most sensitive plasma genotyping platforms still have a sensitivity of only 70%-80%, such that a negative result requires tissue biopsy confirmation. This poses a clinical challenge because negative plasma genotyping is correlated with more limited metastatic spread and lower tumor burden, such that biopsy of these patients may be even more challenging. Because invasive biopsy remains an integral part of the diagnostic strategy, methods are needed for maximizing the yield from these biopsy procedures.

There is a current paradox between the need for large amounts of tissue for multiplex analysis of an increasing number of targetable drivers and markers of response to immune therapy (PD-L1, TMB) and the development of minimally invasive biopsy procedures that results in limited specimens. Up to 25% of patients are thus treated without knowledge of the molecular profile of their tumor (4). In particular, 20% of endobronchial ultrasonography transbronchial needle aspiration (EBUS-TBNA) are rejected from genotyping due to lack of tissue (5) after time and tissue consuming diagnostics steps that are sometimes not required (resistance setting). Circulating tumor DNA is an emerging approach for cancer genotyping but sensitivity is limited to 70-80% (6) by inconsistent tumor shed and low DNA concentrations, so that tissue biopsy is still routine. Also, feasibility of TMB assessment on tissue is only 60% (likely much less on EBUS-TBNA specimens) (7) and approximately 80% in plasma (blood TMB, bTMB) (3).

The presence of cfDNA in several biological fluids and the feasibility of detecting mutations of interest (usually targeting only EGFR) in these fluids (urine, pleural fluid, CSF) have been clearly demonstrated (8-12), while blood is the most widely studied liquid biopsy substrate in advanced NSCLC.

Furthermore, we showed in a proof of concept study, investigating various FNA specimens in a limited numbers of patients that cytology samples' supernatant (usually discarded) is a rich source of DNA. Our results suggest that supernatant free DNA (sfDNA) can be used for baseline and resistance genotyping (13).

Eligibility

Inclusion Criteria:

  • Age > 18 years-old
  • Patients planned for an EBUS-TBNA for
    1. Suspicion of stage IV lung cancer (PET+ mediastinal node(s)) (Cohort 1)
    2. Stage IV NSCLC with an EGFR, BRAF, HER2, MET mutation or ALK, RET or ROS1 rearranged NSCLC and acquired resistance to targeted therapy (Cohort 2)
  • Performance status 0-3
  • Informed consent

Exclusion Criteria:

  • Refusal to participate
  • Patient under legal tutelage

Study details
    Lung Cancer

NCT04624373

University Hospital, Toulouse

11 September 2025

Step 1 Get in touch with the nearest study center
We have submitted the contact information you provided to the research team at {{SITE_NAME}}. A copy of the message has been sent to your email for your records.
Would you like to be notified about other trials? Sign up for Patient Notification Services.
Sign up

Send a message

Enter your contact details to connect with study team

Investigator Avatar

Primary Contact

  Other languages supported:

First name*
Last name*
Email*
Phone number*
Other language

FAQs

Learn more about clinical trials

What is a clinical trial?

A clinical trial is a study designed to test specific interventions or treatments' effectiveness and safety, paving the way for new, innovative healthcare solutions.

Why should I take part in a clinical trial?

Participating in a clinical trial provides early access to potentially effective treatments and directly contributes to the healthcare advancements that benefit us all.

How long does a clinical trial take place?

The duration of clinical trials varies. Some trials last weeks, some years, depending on the phase and intention of the trial.

Do I get compensated for taking part in clinical trials?

Compensation varies per trial. Some offer payment or reimbursement for time and travel, while others may not.

How safe are clinical trials?

Clinical trials follow strict ethical guidelines and protocols to safeguard participants' health. They are closely monitored and safety reviewed regularly.
Add a private note
  • abc Select a piece of text.
  • Add notes visible only to you.
  • Send it to people through a passcode protected link.