Image

Resistance Training and Corticospinal Excitability in Multiple Sclerosis

Resistance Training and Corticospinal Excitability in Multiple Sclerosis

Recruiting
18 years and older
All
Phase N/A

Powered by AI

Overview

The goal of the present study is to investigate effects of progressive resistance training on central nervous system functioning (corticospinal excitability (CSE)) and walking capacity in persons with multiple sclerosis (pwMS). A total of 54 pwMS will be enrolled and randomized into 1 of 3 groups: high dose resistant training (RT), low dose RT, and waitlist control.

Description

Neurodegeneration is a hallmark of multiple sclerosis (MS), affecting both structure and function of the central nervous system (CNS). Neurodegeneration is the main driver of disability progression in MS, evidenced by studies showing deleterious structural and functional CNS changes, ultimately reducing quality of life. Consequently, the interaction between the nervous system and muscular system undergoes deleterious changes causing reduced neuromuscular function (i.e., ability to develop muscle strength and power) and physical function.

The functional CNS changes have been evidenced by using the non invasive brain stimulation technique Transcranial Magnetic Stimulation, showing decreased corticospinal excitability alongside increased central motor conduction time. Moreover, functional peripheral nervous system (PNS) changes have been evidenced by nerve conduction methods, revealing decreased amplitude of compound muscle action potential and increased latency of nerve signaling. In an ongoing exploratory study (unpublished), the investigators have observed that functional CNS and PNS outcomes deteriorate with disability progression from healthy to mildly to moderately disabled people with MS (PwMS).

Exercise is beneficial from both an individual and a societal perspective, and has proven to be both safe and without any noticeable side effects in PwMS. Resistance training (RT) appears particularly effective in improving neuromuscular function (mainly muscle strength) and physical function (especially walking capacity). Whilst RT and other exercise modalities may elicit positive effects on CNS structure in PwMS, it seems to require a long-term (≥ 6 months) exposure. In contrast, CNS (and potentially PNS) function may adapt much more rapidly, despite a scarcity of studies (and with heterogeneous findings) involving PwMS. Interestingly, an exploratory exercise study (non-controlled, low sample size, 10 weeks treadmill walking intervention) assessed corticospinal excitability in PwMS, and observed substantial improvements after the intervention. Apart from this study, a major knowledge gap exists in terms of elucidating the potential beneficial effects of exercise (RT in particular) on CNS (and PNS) function. Based on evidence from healthy young individuals, substantial improvements in corticospinal excitability have been shown following 2-12 weeks of RT, supporting that RT-induced improvements in corticospinal excitability can also be seen in PwMS. Lastly, as existing exercise guidelines for PwMS fails to refer to evidence on dose-response to exercise, and a recent systematic review on exercise studies found no dose-response studies in PwMS (n=202), this aspect is also of great clinical relevance.

Eligibility

Inclusion Criteria:

  • Age ≥ 18 years
  • MS diagnosis according to the McDonald diagnostic criteria
  • Shows impairments in walking capacity
  • Ability to self transport to test and exercise

Exclusion Criteria:

  • Pregnancy
  • Neurological or other comorbidities that affects the nervous system
  • Relapse within the past 2 months
  • Pacemaker or metallic implants
  • Hypertension (medically unregulated)
  • Participation in structured RT over the past 3 months (≥ 2 sessions/week).

Study details
    Multiple Sclerosis

NCT06374108

University of Aarhus

7 September 2025

Step 1 Get in touch with the nearest study center
We have submitted the contact information you provided to the research team at {{SITE_NAME}}. A copy of the message has been sent to your email for your records.
Would you like to be notified about other trials? Sign up for Patient Notification Services.
Sign up

Send a message

Enter your contact details to connect with study team

Investigator Avatar

Primary Contact

  Other languages supported:

First name*
Last name*
Email*
Phone number*
Other language

FAQs

Learn more about clinical trials

What is a clinical trial?

A clinical trial is a study designed to test specific interventions or treatments' effectiveness and safety, paving the way for new, innovative healthcare solutions.

Why should I take part in a clinical trial?

Participating in a clinical trial provides early access to potentially effective treatments and directly contributes to the healthcare advancements that benefit us all.

How long does a clinical trial take place?

The duration of clinical trials varies. Some trials last weeks, some years, depending on the phase and intention of the trial.

Do I get compensated for taking part in clinical trials?

Compensation varies per trial. Some offer payment or reimbursement for time and travel, while others may not.

How safe are clinical trials?

Clinical trials follow strict ethical guidelines and protocols to safeguard participants' health. They are closely monitored and safety reviewed regularly.
Add a private note
  • abc Select a piece of text.
  • Add notes visible only to you.
  • Send it to people through a passcode protected link.