Image

Intensive Care Unit-acquired Heart Failure in Critically Ill: the ICU-HF Study

Intensive Care Unit-acquired Heart Failure in Critically Ill: the ICU-HF Study

Recruiting
18 years and older
All
Phase N/A

Powered by AI

Overview

Critically ill patients in intensive care units (ICUs) are exposed to a wide range of complications that can affect long-term morbidity and mortality. Not only the initial diagnosis at the time of admission may lead to complications; the ICU stay itself can also be associated with specific disease patterns.

One of the most frequent complications of intensive care treatment is the loss of skeletal muscle mass. Muscle atrophy can be detected in up to 17% of all critically ill ICU patients. This is accompanied by a neuromuscular organ dysfunction collectively referred to as Intensive Care Unit Acquired Weakness (ICUAW). Milder forms of ICUAW are present in up to 40% of all ICU patients, which corresponds to approximately 1.2 million individuals per year in Germany alone. These patients face a multitude of long-term complications and have an increased mortality risk that may persist for up to five years after ICU discharge.

To date, the definition of ICUAW is limited to the skeletal musculature of critically ill patients. It remains unclear whether an ICU stay also affects other muscle groups, such as the myocardium. A first retrospective study demonstrated a significant reduction in cardiac muscle mass in critically ill ICU patients. However, the clinical implications of this loss of myocardial mass and the contributing factors remain uncertain. In addition, the patient cohort was highly heterogeneous regarding the initial diagnosis, the intensive care therapies performed (e.g., invasive ventilation), and the findings were based on a small sample size of just 44 patients.

Another study investigated the association between skeletal muscle atrophy and myocardial structure in a cohort of 378 community-dwelling older adults. They showed that a decrease in skeletal muscle mass was also accompanied by a reduction in myocardial mass. Furthermore, they found a correlation between skeletal muscle atrophy and reductions in left ventricular and left atrial dimensions. However, it remains unclear whether a reduction in myocardial mass is associated with heart failure.

Heart failure is associated with a significantly increased risk of long-term morbidity and mortality. The diagnosis and staging of heart failure is primarily based on morphological assessment via transthoracic echocardiography (TTE), in combination with laboratory biomarkers (e.g., NT-proBNP), and the patient's subjective functional impairment as classified by the New York Heart Association (NYHA). Identifying heart failure is clinically relevant, as optimized pharmacologic therapy can lead to significant improvements in cardiac function and positively impact long-term survival.

The aim of this study is to investigate the impact of intensive care treatment on myocardial mass and to assess a potential correlation with heart failure. Measurement of myocardial mass and evaluation of heart failure will be performed via transthoracic echocardiography.

Eligibility

Inclusion Criteria:

  • Critically ill patients aged ≥ 18 years
  • Initiation of mechanical ventilation within the first 24 hours after ICU admission
  • Expected duration of ICU stay of at least 3 days

Exclusion Criteria:

  • Language barriers
  • Expected death during ICU stay or planned transition to best supportive care
  • Known allergy to electrode gel
  • Ultrasound not technically feasible (e.g., due to extensive wounds, skin rash, or dressings)
  • Patients with a pacemaker or similar electronic devices for whom bioelectrical impedance analysis (BIA) is contraindicated
  • Patients with severe aortic valve stenosis

Study details
    Heart Failure
    ICUAW

NCT07094425

Charite University, Berlin, Germany

6 September 2025

Step 1 Get in touch with the nearest study center
We have submitted the contact information you provided to the research team at {{SITE_NAME}}. A copy of the message has been sent to your email for your records.
Would you like to be notified about other trials? Sign up for Patient Notification Services.
Sign up

Send a message

Enter your contact details to connect with study team

Investigator Avatar

Primary Contact

  Other languages supported:

First name*
Last name*
Email*
Phone number*
Other language

FAQs

Learn more about clinical trials

What is a clinical trial?

A clinical trial is a study designed to test specific interventions or treatments' effectiveness and safety, paving the way for new, innovative healthcare solutions.

Why should I take part in a clinical trial?

Participating in a clinical trial provides early access to potentially effective treatments and directly contributes to the healthcare advancements that benefit us all.

How long does a clinical trial take place?

The duration of clinical trials varies. Some trials last weeks, some years, depending on the phase and intention of the trial.

Do I get compensated for taking part in clinical trials?

Compensation varies per trial. Some offer payment or reimbursement for time and travel, while others may not.

How safe are clinical trials?

Clinical trials follow strict ethical guidelines and protocols to safeguard participants' health. They are closely monitored and safety reviewed regularly.
Add a private note
  • abc Select a piece of text.
  • Add notes visible only to you.
  • Send it to people through a passcode protected link.