Image

Hyperpolarized MR Imaging with Carbon-13 Pyruvate in the Human Body

Hyperpolarized MR Imaging with Carbon-13 Pyruvate in the Human Body

Recruiting
21-99 years
All
Phase 2

Powered by AI

Overview

Positron emission tomography with 18F fluorodeoxyglucose (FDG) is the conventional imaging technique to provide information regarding tissue glucose uptake and has been highly clinically successful. However, it cannot assess downstream metabolism, which may be useful in the diagnosis and assessment of treatment response in a variety of diseases. Patients will also be exposed to ionizing radiation, the amount of exposure can vary depending on the dose of tracer administered, frequency of scans and duration of each scan. Carbon-13 (13C) magnetic resonance imaging (MRI) is particularly attractive for metabolic imaging because carbon serves as the backbone of nearly all organic molecules in the body. With this technique, the polarization increases to approximately 30%-40%, an increase of over 10,000 to 100,000-fold, thereby dramatically increasing the MRI signal . Whilst the role of 13C imaging has been demonstrated in many sites around the world, we aim to demonstrate the feasibility and application of 13C hyperpolarized imaging in healthy Singapore residents and patients with cardiovascular and/or cardiometabolic diseases.

Description

Positron emission tomography with 18F fluorodeoxyglucose (FDG) is the conventional imaging technique to provide information regarding tissue glucose uptake and has been highly clinically successful. However, it cannot assess downstream metabolism, which may be useful in the diagnosis and assessment of treatment response in a variety of diseases. Patients will also be exposed to ionizing radiation, the amount of exposure can vary depending on the dose of tracer administered, frequency of scans and duration of each scan.

Carbon 13 (13C) magnetic resonance imaging (MRI) is particularly attractive for metabolic imaging because carbon serves as the backbone of nearly all organic molecules in the body. However, the low natural abundance of the 13C isotope at ~1.1% has made in vivo imaging extremely challenging. To improve the MR signal 13C nuclei, probes are synthetically enriched to increase the concentration of the 13C label in a molecule. MRI signal can be further increased by the process of hyperpolarization. At low temperature and high magnetic field, electrons have a very high level of polarization (ie, nearly all the electrons are aligned in the same direction). This high level of polarization can be transferred to 13C-labeled probes, increasing their MRI signals. This transfer of polarization is accomplished by mixing radicals (a source of free electrons) with the 13C-labeled probe(s) to be hyperpolarized and placing the mixture in a polarizer at a magnetic field typically of 3.0-5.0 T and at a low temperature (approximately 1 K). Microwave irradiation is then applied to transfer the polarization from unpaired electrons in a trityl radical to the 13C-labeled probe. The final solution retains a high level of polarization and can be formulated to be at physiologic pH, osmolarity, and temperature for in vivo injection and metabolic investigations.

With this technique, the polarization increases to approximately 30%-40%, an increase of over 10,000 to 100,000-fold, thereby dramatically increasing the MRI signal (Figure 1). The enhanced signal, however, is typically available only for a short period of time (1-2 minutes), as the polarization decays back to its thermal equilibrium level. Therefore, rapid imaging is needed to acquire high signal-to-noise ratio metabolic data with minimal polarization loss and to measure fast metabolic processes.

To date, hyperpolarized imaging technique has been performed in more than 800 healthy volunteers and patients; and in more than 1,200 studies in various clinical conditions.

HYPOTHESIS AND OBJECTIVES:

This proof-of-concept study to demonstrate feasibility and application of 13C hyperpolarized imaging in healthy Singapore residents and patients with cardiovascular/cardiometabolic diseases.

  1. To establish reference ranges in the metabolic products of hyperpolarized 13C-pyruvate (lactate, alanine and bicarbonate) in healthy volunteers and examine repeatability of the 13C hyperpolarized imaging sequences.
  2. To develop the application of 13C hyperpolarized imaging in patients with cardiovascular and cardiometabolic diseases.

Eligibility

Inclusion Criteria:

Healthy Volunteers:

  1. Age 21 years and above
  2. No significant medical co-morbidities (such as chronic kidney disease, diabetes mellitus, heart failure, ischemic heart disease, previous strokes)
  3. No history of cancer
  4. Able and willing to comply with study procedures and provide signed informed consent

Patients with cardiovascular/cardiometabolic diseases:

  1. Age 21 years and above
  2. Physician diagnosed cardiovascular conditions: ischemic heart disease, inherited cardiomyopathies (hypertrophic, dilated or infiltrative cardiomyopathies) and stable heart failure; and/or
  3. Cardiometabolic conditions (such as diabetes on medications, hypertension, central obesity, fatty liver disease)
  4. Able and willing to comply with study procedures and provide signed informed consent

Exclusion Criteria:

  1. Standard contraindications for magnetic resonance procedures (such as implantable medical devices, suspected presence of surgical apparatus or shrapnel, severe claustrophobia)
  2. Unstable medical conditions (such as symptomatic heart failure, unstable hypertension/glucose levels as determined by investigators, symptomatic arrhythmias, angina)
  3. Pregnant or nursing women
  4. Known allergies to pyruvate or any of its components

Study details
    Heart Failure
    Cardiometabolic Syndrome
    Cancer Diagnosis
    Cardiovascular Diseases
    Healthy Volunteers

NCT06645691

National Heart Centre Singapore

25 August 2025

Step 1 Get in touch with the nearest study center
We have submitted the contact information you provided to the research team at {{SITE_NAME}}. A copy of the message has been sent to your email for your records.
Would you like to be notified about other trials? Sign up for Patient Notification Services.
Sign up

Send a message

Enter your contact details to connect with study team

Investigator Avatar

Primary Contact

  Other languages supported:

First name*
Last name*
Email*
Phone number*
Other language

FAQs

Learn more about clinical trials

What is a clinical trial?

A clinical trial is a study designed to test specific interventions or treatments' effectiveness and safety, paving the way for new, innovative healthcare solutions.

Why should I take part in a clinical trial?

Participating in a clinical trial provides early access to potentially effective treatments and directly contributes to the healthcare advancements that benefit us all.

How long does a clinical trial take place?

The duration of clinical trials varies. Some trials last weeks, some years, depending on the phase and intention of the trial.

Do I get compensated for taking part in clinical trials?

Compensation varies per trial. Some offer payment or reimbursement for time and travel, while others may not.

How safe are clinical trials?

Clinical trials follow strict ethical guidelines and protocols to safeguard participants' health. They are closely monitored and safety reviewed regularly.
Add a private note
  • abc Select a piece of text.
  • Add notes visible only to you.
  • Send it to people through a passcode protected link.