Image

Developing and Evaluating a Machine-Learning Opioid Overdose Prediction & Risk-Stratification Tool in Primary Care

Developing and Evaluating a Machine-Learning Opioid Overdose Prediction & Risk-Stratification Tool in Primary Care

Recruiting
18 years and older
All
Phase N/A

Powered by AI

Overview

This clinical trial aims to evaluate the pilot implementation of a machine-learning (ML)-driven clinical decision support (CDS) tool designed to predict opioid overdose risk within the electronic health record (EHR) system at UF Health Internal Medicine and Family Medicine clinics in Gainesville, Florida. The study will use a pre- versus post-implementation design to compare outcomes within clinics, focusing on measures such as naloxone prescribing rates and opioid overdose occurrences. Researchers will also assess the usability, acceptability, and feasibility of the CDS tool through qualitative interviews with primary care clinicians (PCPs) in the participating clinics.

Description

This clinical trial evaluates the pilot implementation of a ML-driven CDS tool designed to predict opioid overdose risk within the electronic health record (EHR) system at thirteen UF Health internal medicine and family medicine clinics in Gainesville, Florida.

The implementation process involved backend and frontend development and integration of the CDS tool. For backend integration, the investigators reviewed clinical workflows, designed a data flow plan to incorporate risk scores into patient charts, and collaborated with UF Health IT and Integrated Data Repository (IDR) Research Services to address alert implementation, data flow, server specifications, and responsibilities. Risk assessments approved by UF Health IT and the institutional review board (IRB) ensured secure access to patient health information (PHI) and enabled EHR integration. For frontend development, the investigators used a user-centered design approach to create the CDS tool prototype, incorporating feedback from PCPs during formative interviews to refine the user interface and ensure timely, actionable alerts through the EPIC system without disrupting clinical workflows.

The study primarily aims to assess the usability, acceptance, and feasibility of the CDS tool six months post-implementation through mixed-method evaluations. Researchers will use semi-structured interviews and an online questionnaire to collect feedback from PCPs, focusing on alert usability, preferences, and outcomes. Quantitative analyses will evaluate alert penetration, usage patterns, and PCP actions, while qualitative analyses will explore themes and insights from override comments to guide tool optimization. Researchers will also explore secondary patient-level outcomes using EHR data such as naloxone prescriptions.

Eligibility

Inclusion Criteria:

For PCP level outcomes assessment

  • PCPs
  • practicing in any of the 13 participating clinics (10 UF Health Family Medicine clinics and 3 UF Health Internal Medicine) in Gainesville, Florida.

For patient level outcomes assessment:

Inclusion criteria: Patients who seen in any of the 9 participating UF Health clinics who

  • are aged ≥18 years
  • received any opioid prescription in the past year prior to their clinic visit.
  • are identified as being at elevated risk for overdose by the ML algorithm. Exclusion Criteria: Patients who
  • had malignant cancer diagnosis or hospice care prior to study enrollment

Study details
    Opiate Overdose
    Opioid-Related Disorders
    Narcotic-Related Disorders
    Substance-related Disorders
    Chemically-Induced Disorders
    Mental Disorders

NCT06810076

University of Pittsburgh

25 April 2025

Step 1 Get in touch with the nearest study center
We have submitted the contact information you provided to the research team at {{SITE_NAME}}. A copy of the message has been sent to your email for your records.
Would you like to be notified about other trials? Sign up for Patient Notification Services.
Sign up

Send a message

Enter your contact details to connect with study team

Investigator Avatar

Primary Contact

  Other languages supported:

First name*
Last name*
Email*
Phone number*
Other language

FAQs

Learn more about clinical trials

What is a clinical trial?

A clinical trial is a study designed to test specific interventions or treatments' effectiveness and safety, paving the way for new, innovative healthcare solutions.

Why should I take part in a clinical trial?

Participating in a clinical trial provides early access to potentially effective treatments and directly contributes to the healthcare advancements that benefit us all.

How long does a clinical trial take place?

The duration of clinical trials varies. Some trials last weeks, some years, depending on the phase and intention of the trial.

Do I get compensated for taking part in clinical trials?

Compensation varies per trial. Some offer payment or reimbursement for time and travel, while others may not.

How safe are clinical trials?

Clinical trials follow strict ethical guidelines and protocols to safeguard participants' health. They are closely monitored and safety reviewed regularly.
Add a private note
  • abc Select a piece of text.
  • Add notes visible only to you.
  • Send it to people through a passcode protected link.