Image

3D Printing to Improve Nasal Irrigation Outcome

3D Printing to Improve Nasal Irrigation Outcome

Recruiting
18-75 years
All
Phase N/A

Powered by AI

Overview

Three-dimensional (3D) printing has been an emerging technology with uses in a wide array of fields. This research aims to use 3D printing as a tool to provide personalized education to maximize treatment efficacy based on the patient's individual anatomy. With increased irrigation to the sinuses, we hypothesize there will be improved patient satisfaction and higher quality of life. The outcomes of this research could lead to a new option for patients who live with chronic rhinosinusitis are not candidates for surgery or are interested in less invasive options. The 3D printed nasal replica is not something that would be implanted, rather it is a hand-held device used specifically for participants to better understand their nasal anatomy.

Description

Chronic rhinosinusitis (CRS) is one of the most common medical conditions in the US, affecting an estimated 13% of adults, or some 30 million people. It accounts for 12.5 million physician office visits each year and an annual health care expenditure of $5.8 billion (National Health Interview Survey 2009, CDC). Major symptoms include nasal obstruction, facial pain/pressure, nasal discharge, purulence in the nasal cavity, and loss of smell. These symptoms significantly impact patient quality of life, even compared to chronic debilitating diseases such as diabetes and congestive heart failure.

Topical therapies play an integral role in the management of CRS, and high-volume irrigation delivery (e.g., neti pot, squeeze bottles) is more effective for achieving distribution to the sinuses than other topical delivery methods such as nasal sprays, nebulizers, or atomizers. Saline irrigations have been recommended in a number of clinical scenarios, including initial management of CRS and postoperative care. High-volume irrigations have also shown benefits for medication delivery, such as with mupirocin and corticosteroids. However, due to the intricate and variable anatomy of the human nasal airway, the efficacy of topical irrigations is inconsistent and difficult to predict. Previous studies from our group and others have shown that nasal irrigant may not reliably penetrate all sinuses, and the effectiveness varies depending on specific sinuses, head positions, injection angle, pressure, flow rates, and other factors. We currently do not have a clear understanding of the optimal delivery technique(s). In efforts to improve these outcomes, the efficacy of topical irrigation delivery to target sinuses is an area of active research. Yet, investigations have been limited by labor-intensive methodologies, such as cadaver studies or using colored dyes followed by endoscopy to visualize where the irrigation might have reached. Other studies have used irrigations with iodinated contrast followed by computed tomography (CT) scans to determine which sinuses collect contrast material. Similarly, technetium 99m sulfur colloid and fluorescein have also been used as tracers to visualize the distribution of sinus irrigations. These labor-intensive techniques are difficult to apply to a large sample size. They increase patient risk and commonly capture only where the irrigation fluid has been at the end of irrigation, but not the details of irrigation flow paths that would allow us to understand why the irrigation outcomes vary.

From both patients' and clinicians' perspectives, the lack of clear prediction of patient-specific irrigation outcomes can be frustrating, as clinicians prescribe a rigorous daily irrigation routine but have no assurance that what patients are doing is effective. When symptoms fail to improve after courses of irrigation, it is difficult to determine whether the added medication is not working, or the irrigation does not reach clinically relevant targets deep within the sinuses. Many patients and surgeons thus opt for systemic medication or surgery, which increases risk of overmedication, growth of resistant organisms, systemic side effects, and serious risk from surgery.

The purpose of this study was to propose a novel idea: applying three-dimensional (3D)-printing technology based on individual patients' computed tomography (CT) scans to determine an optimal personalized nasal irrigation strategy (head positions, angle of injection, flow rates, etc.).

Eligibility

Inclusion Criteria:

  • Chronic rhinosinusitis without nasal polyps (CRSsNP) or Chronic rhinosinusitis with nasal polyps (CRSwNP).

Exclusion Criteria:

  • Patients with significant nasal polyps (as determined by a clinician) were excluded upfront due to the unlikeness of irrigation penetration regardless of the head position. Patients with significant atopy, cystic fibrosis, granulomatosis with polyangiitis or other connective tissue disorder, and current pregnancy were also excluded.

Study details
    Chronic Rhinosinusitis with Nasal Polyps
    Chronic Rhinosinusitis Without Nasal Polyps

NCT06118554

Ohio State University

31 March 2025

Step 1 Get in touch with the nearest study center
We have submitted the contact information you provided to the research team at {{SITE_NAME}}. A copy of the message has been sent to your email for your records.
Would you like to be notified about other trials? Sign up for Patient Notification Services.
Sign up

Send a message

Enter your contact details to connect with study team

Investigator Avatar

Primary Contact

  Other languages supported:

First name*
Last name*
Email*
Phone number*
Other language

FAQs

Learn more about clinical trials

What is a clinical trial?

A clinical trial is a study designed to test specific interventions or treatments' effectiveness and safety, paving the way for new, innovative healthcare solutions.

Why should I take part in a clinical trial?

Participating in a clinical trial provides early access to potentially effective treatments and directly contributes to the healthcare advancements that benefit us all.

How long does a clinical trial take place?

The duration of clinical trials varies. Some trials last weeks, some years, depending on the phase and intention of the trial.

Do I get compensated for taking part in clinical trials?

Compensation varies per trial. Some offer payment or reimbursement for time and travel, while others may not.

How safe are clinical trials?

Clinical trials follow strict ethical guidelines and protocols to safeguard participants' health. They are closely monitored and safety reviewed regularly.
Add a private note
  • abc Select a piece of text.
  • Add notes visible only to you.
  • Send it to people through a passcode protected link.