Image

Radiological Changes of Glymphatic-meningeal Lymphatic Drainage System After Subarachnoid Hemorrhage

Radiological Changes of Glymphatic-meningeal Lymphatic Drainage System After Subarachnoid Hemorrhage

Recruiting
18-80 years
All
Phase N/A

Powered by AI

Overview

Subarachnoid hemorrhage (SAH) is a common and extremely critical disease in neurosurgery. The mortality rate within 30 days of the onset of SAH is as high as 50%, and about 15% of SAH patients die without reaching the hospital. Nearly half of the survivors have severe neurological dysfunction, causing a huge burden to the families and society of the patients.

Recently, the introduction of the "glymphatic-meningeal lymphatic vessels" drainage system has updated the current concept of intracranial cerebrospinal fluid circulation. After subarachnoid hemorrhage, a large number of blood components flooded into the subarachnoid space and entered the cerebrospinal fluid circulation, which directly affected the function of the lymphatic-meningeal lymphatic drainage system. Many preclinical animal studies have pointed out that the damage of the lymphatic-meningeal lymphatic drainage system is involved in the aggravation of cerebral edema, neuroinflammation and hydrocephalus after SAH, which ultimately leads to poor prognosis of patients.

However, at present, the changes of the glymphatic-meningeal lymphatic drainage system after SAH have only been confirmed in animal models, and clinical evidence is lacking. With the development of imaging technology, many research teams have confirmed the functional changes of the lymphatic-meningeal lymphatic drainage system in Alzheimer's disease and Parkinson's disease by using different sequences of non-invasive MRI, such as 3D T2-FLAIR, DTI-ALPS and other sequences.

Description

Subarachnoid hemorrhage (SAH) is a common and extremely critical disease in neurosurgery. The mortality rate within 30 days of the onset of SAH is as high as 50% and about 15% of SAH patients die without reaching the hospital. Nearly half of the survivors have severe neurological dysfunction, causing a huge burden to the families and society of the patients.

Recently, the introduction of the "glymphatic-meningeal lymphatic vessels" drainage system has updated the current concept of intracranial cerebrospinal fluid circulation. After subarachnoid hemorrhage, a large number of blood components flooded into the subarachnoid space and entered the cerebrospinal fluid circulation, which directly affected the function of the lymphatic-meningeal lymphatic drainage system. Many preclinical animal studies have pointed out that the damage of the lymphatic-meningeal lymphatic drainage system is involved in the aggravation of cerebral edema, neuroinflammation, and hydrocephalus after SAH, which ultimately leads to poor prognosis of patients.

However, at present, the changes in the glymphatic-meningeal lymphatic drainage system after SAH have only been confirmed in animal models, and clinical evidence is lacking. With the development of imaging technology, many research teams have confirmed the functional changes of the lymphatic-meningeal lymphatic drainage system in Alzheimer's disease and Parkinson's disease by using different sequences of non-invasive MRI, such as 3D T2-FLAIR, DTI-ALPS, and other sequences.

Eligibility

Inclusion Criteria:

  • ①18-80 years old; ② Voluntary patients with spontaneous subarachnoid hemorrhage undergoing aneurysm interventional therapy.

Exclusion Criteria:

  • ①A history of trauma or prior brain injury (stroke, cerebral hemorrhage, etc., leaving associated chronic changes on CT); ②Patients with imaging data loss and severe comorbidities prior to the onset of SAH

Study details
    Subarachnoid Hemorrhage
    Lymphatic System Disorder
    Meningeal Lymphatic Vessels

NCT06444438

Second Affiliated Hospital, School of Medicine, Zhejiang University

9 June 2024

Step 1 Get in touch with the nearest study center
We have submitted the contact information you provided to the research team at {{SITE_NAME}}. A copy of the message has been sent to your email for your records.
Would you like to be notified about other trials? Sign up for Patient Notification Services.
Sign up

Send a message

Enter your contact details to connect with study team

Investigator Avatar

Primary Contact

  Other languages supported:

First name*
Last name*
Email*
Phone number*
Other language

FAQs

Learn more about clinical trials

What is a clinical trial?

A clinical trial is a study designed to test specific interventions or treatments' effectiveness and safety, paving the way for new, innovative healthcare solutions.

Why should I take part in a clinical trial?

Participating in a clinical trial provides early access to potentially effective treatments and directly contributes to the healthcare advancements that benefit us all.

How long does a clinical trial take place?

The duration of clinical trials varies. Some trials last weeks, some years, depending on the phase and intention of the trial.

Do I get compensated for taking part in clinical trials?

Compensation varies per trial. Some offer payment or reimbursement for time and travel, while others may not.

How safe are clinical trials?

Clinical trials follow strict ethical guidelines and protocols to safeguard participants' health. They are closely monitored and safety reviewed regularly.
Add a private note
  • abc Select a piece of text.
  • Add notes visible only to you.
  • Send it to people through a passcode protected link.