Image

Physiological Effects of Lactate in Individuals With Chronic Heart Failure

Physiological Effects of Lactate in Individuals With Chronic Heart Failure

Recruiting
18 years and older
All
Phase N/A

Powered by AI

Overview

Background

Lactate is continuously produced in the human body through two primary processes: glycolysis and microbial fermentation in the gastrointestinal tract. At rest, its concentration in the bloodstream typically ranges from 1 to 2 mmol/L. However, during periods of physical exertion or insufficient oxygen supply, such as during intense exercise, lactate levels significantly increase. Traditionally, lactate was perceived as a byproduct of anaerobic metabolism. Nevertheless, emerging research has illuminated its vital role as both a signaling molecule and a crucial energy source for vital organs like skeletal muscle, brain, and the heart.

Objectives

The primary aim of this study is to investigate the impact of physiological levels of circulating lactate on the hemodynamics of individuals with chronic heart failure. This research seeks to understand how lactate affects the cardiovascular response in this specific patient population.

Design and Endpoints:

The study design employs a double-blind, randomized crossover approach involving 12 heart failure patients. Each participant will undergo two separate visits.

Visit 1: Participants will receive a three-hour intravenous infusion of either a racemic (D/L) mixture of sodium lactate or an intravenous isotonic sodium chloride placebo, with a subsequent crossover to the opposite infusion on the same day.

Visit 2: Similar to the first visit, participants will receive either an orally administered racemic (D/L) mixture of sodium lactate or an isocaloric, isovolumic oral placebo (maltodextrin), with a crossover to the opposite administration after three hours.

The study's endpoints include cardiac output (primary), mixed venous saturation (SVO2), pulmonary wedge pressure, resting echocardiography (left ventricular ejection fraction and myocardial work efficiency), and measurements of vasoactive substances in blood samples.

Methods

The study employs invasive Swan-Ganz monitoring to measure cardiac output, echocardiography, and frequent venous blood sample collections. These measurements and samples will be taken at specific intervals during the study visits.

Intervention

To investigate the isolated hemodynamic and physiological effects of lactate, the study utilizes lactate infusion and ingestion to induce a state of hyperlactatemia within the physiological range. The intended dosages aim to stay within the physiological range, with no values expected to exceed 3-4 mmol/L.

Eligibility

Inclusion Criteria:

  • Chronic heart failure
  • NYHA II-III
  • Left ventricular ejection fraction <40%
  • Negative urine-HCG for women with childbearing potential

Exclusion Criteria:

  • Diabetes or HbA1c >48 mmol/mol
  • Significant cardiac valve disease
  • Severe stable angina pectoris
  • Severe comorbidity as judged by the investigator
  • Inability to give informed consent
  • Age <18 years
  • Other disease or treatment making subject unsuitable for study participation as judged by the investigator.

Study details
    Heart Failure
    Systolic

NCT06121323

Henrik Wiggers

14 April 2024

Step 1 Get in touch with the nearest study center
We have submitted the contact information you provided to the research team at {{SITE_NAME}}. A copy of the message has been sent to your email for your records.
Would you like to be notified about other trials? Sign up for Patient Notification Services.
Sign up

Send a message

Enter your contact details to connect with study team

Investigator Avatar

Primary Contact

  Other languages supported:

First name*
Last name*
Email*
Phone number*
Other language

FAQs

Learn more about clinical trials

What is a clinical trial?

A clinical trial is a study designed to test specific interventions or treatments' effectiveness and safety, paving the way for new, innovative healthcare solutions.

Why should I take part in a clinical trial?

Participating in a clinical trial provides early access to potentially effective treatments and directly contributes to the healthcare advancements that benefit us all.

How long does a clinical trial take place?

The duration of clinical trials varies. Some trials last weeks, some years, depending on the phase and intention of the trial.

Do I get compensated for taking part in clinical trials?

Compensation varies per trial. Some offer payment or reimbursement for time and travel, while others may not.

How safe are clinical trials?

Clinical trials follow strict ethical guidelines and protocols to safeguard participants' health. They are closely monitored and safety reviewed regularly.
Add a private note
  • abc Select a piece of text.
  • Add notes visible only to you.
  • Send it to people through a passcode protected link.