Image

Comparison of Neuromuscular Recovery at the Hand and Foot

Comparison of Neuromuscular Recovery at the Hand and Foot

Recruiting
18 years and older
All
Phase N/A

Powered by AI

Overview

Gold standard for neuromuscular blockade evaluation is accelerometry in three dimensions at the thumb. There are many times that measurement at the hand can be falsely under-estimated intraoperatively secondary to constriction of the upper extremities. We believe that installing the same accelerometer at the first toe will give us similar readings for both neuromuscular blockade and recovery from rocuronium administration. This study focuses on agreement values between two accelerometers installed on the hand and at on the foot.

Description

The development of advanced competence in laparoscopic surgery, robotic surgery and the broadening of indications for partial or total laparoscopy techniques created a novel environment where patients need to be deeply paralyzed and positioned in form fitting mattresses to ensure high quality exposure and security in extreme positioning. It is now undisputed that clinical evaluation done any other way than by a objective neuromuscular function monitor may produce faulty conclusions. The elements of the operating setup force anesthesiologists to adapt the way they monitor muscle relaxation since the hands are generally not available for neuromuscular function monitoring. In order to measure properly the level of residual paralysis, the thumb must be able to move freely in a device creating a light preloading on the adductor pollicis allowing to evaluate the force generated during standardized stimulation through accelerometry, the TOFscan device. The corrugator supercilli and orbicularis oculi muscles, an alternate positioning for the accelerometer is sometimes the fallback spot for monitoring. The problem with that muscle is that it does not have the same time curve sensitivity to muscle relaxant than the perilaryngeal muscle have. The investigators are looking for a good representation of the level of patency of the perilaryngeal muscle to ensure that the patient will be able to breath normally after extubation, they must turn to another target. Previous observations have suggested that the monitoring of the hallux flexor muscle could represent a valid alternative. The confirmation of this hypothesis would allow for easy, reproducible, evaluation of the level of muscle relaxation at the perilaryngeal muscles, helping to procure safer conditions for tracheal extubation. Neuromuscular blocking agents (NMBAs) are administered by anesthesiologists during general anesthesia to facilitate endotracheal intubation and/or surgical conditions. Postoperative residual neuromuscular blockade (rNMB), is an adverse event frequently observed after extubation in the postanesthesia care unit (PACU) after surgery. rNMB is associated with upper airway obstruction, reduced pharyngeal muscle coordination, decreased functional residual capacity, and impaired hypoxic ventilatory response and may lead to critical cardiopulmonary complications. To prevent those complications, monitoring NMBAs activity and timely and adequate dosage of reversal agents necessitate precise and valid monitoring.

The current literature supports the exclusive use of quantitative measurements of residual paralysis, subjective monitoring caries to much error in evaluating the level of blockade and is responsible for PACU residual paralysis and its complications. It is well accepted that no amount of rNMB is acceptable (TOF < 1) around extubation periods, a necessary step to ensure safety that relies on timely and correct dosage of the reversal agents.

When TOFscan measures are done on partially mobile thumbs, or transducers positioned in non-optimal fashion, the measure observed (deep blockade) will either delay the reversal procedure because of presumed very deep level paralysis or suggest high doses of reversal agents at a significant cost.

The investigators are confident that validating the measures done at the hallux flexor will allow for easy, relevant and valid estimation of residual paralysis and create a safer environment for muscle relaxation reversal and extubation.

Eligibility

Inclusion Criteria:

  • ASA 1-3 patients
  • Elective surgery
  • Undergoing general anesthesia with rocuronium induced NMB
  • BMI < 36 kg.m-2
  • Age > 18 years old
  • French or English speaking patient

Exclusion Criteria:

  • Renal or hepatic dysfunction
  • Obstructive sleep apnea requiring continuous positive airway pressure (CPAP) machine
  • Neuromuscular disease
  • Peripheral arterial disease (suspected, known or investigated)
  • Calcium channel anomalies
  • Hypothermia (< 35C)
  • Hyper/hypomagnasemia
  • Allergy to any drug used in the study protocol
  • Patient refusal

Study details
    Neuromuscular Blockade

NCT06236763

Ciusss de L'Est de l'Île de Montréal

21 March 2024

Step 1 Get in touch with the nearest study center
We have submitted the contact information you provided to the research team at {{SITE_NAME}}. A copy of the message has been sent to your email for your records.
Would you like to be notified about other trials? Sign up for Patient Notification Services.
Sign up

Send a message

Enter your contact details to connect with study team

Investigator Avatar

Primary Contact

  Other languages supported:

First name*
Last name*
Email*
Phone number*
Other language

FAQs

Learn more about clinical trials

What is a clinical trial?

A clinical trial is a study designed to test specific interventions or treatments' effectiveness and safety, paving the way for new, innovative healthcare solutions.

Why should I take part in a clinical trial?

Participating in a clinical trial provides early access to potentially effective treatments and directly contributes to the healthcare advancements that benefit us all.

How long does a clinical trial take place?

The duration of clinical trials varies. Some trials last weeks, some years, depending on the phase and intention of the trial.

Do I get compensated for taking part in clinical trials?

Compensation varies per trial. Some offer payment or reimbursement for time and travel, while others may not.

How safe are clinical trials?

Clinical trials follow strict ethical guidelines and protocols to safeguard participants' health. They are closely monitored and safety reviewed regularly.
Add a private note
  • abc Select a piece of text.
  • Add notes visible only to you.
  • Send it to people through a passcode protected link.