Image

Automatic Voice Analysis for Dysphagia Screening in Neurological Patients

Automatic Voice Analysis for Dysphagia Screening in Neurological Patients

Recruiting
18 years and older
All
Phase N/A

Powered by AI

Overview

The proposed study suggests using automatic voice analysis and machine learning algorithms to develop a dysphagia screening tool for neurological patients. The research involves patients with Parkinson's disease, stroke, and amyotrophic lateral sclerosis, both with and without dysphagia, along with healthy individuals. Participants perform various vocal tasks during a single recording session. Voice signals are analysed and used as input for machine learning classification algorithms. The significance of this study is that oropharyngeal dysphagia, a condition involving swallowing difficulties in the transit of food or liquids from the mouth to the esophagus, generates malnutrition, dehydration, and pneumonia, significantly contributing to management costs and hospitalization durations. Currently, there is a lack of rapid and effective dysphagia screening methods for healthcare personnel, with only expensive invasive tests and clinical scales in use.

Description

Background

Oropharyngeal dysphagia, defined as any alterations in swallowing abilities during the transit of food or liquids from the oral cavity to the esophagus, is an insidious complication of many neurological diseases. This condition can seriously lead to severe complications such as malnutrition, dehydration, and pneumonia, which overall has a huge impact on management costs and the number of hospitalization days. In this context, it is essential to immediately recognize the risk factors and the first signs of dysphagia to take prompt adequate actions and request further clinical and instrumental evaluations. Rapid, quantitative, and effective dysphagia screening methods are not currently available to support healthcare personnel. To date, only clinical rating scales or expensive invasive tests that require specialized personnel are adopted in clinical scenarios, whereas no objective tools are still available in extra-hospital contexts to alert patients of risk situations.

Current Gaps in Knowledge and Aim:

Since oropharyngeal dysphagia is caused by an impaired coordination control of the swallowing muscles and these muscles play also an important role in the phonation process, investigating voice alterations could be a screening option to recognize dysphagia in patients with neurological diseases. In the current literature, automatic voice analysis and the use of machine learning algorithms have given relevant findings in the discrimination between neurological diseases and healthy subjects, and there are also interesting preliminary data on dysphagia. The goal of this study is to the development a machine learning classification algorithm for dysphagia screening in neurological patients using automatic voice analysis.

Study Involvement:

The study involves patients with neurological diseases (Parkinson's disease, stroke, amyotrophic lateral Sclerosis) with or without dysphagia and healthy individuals. The participants are asked to perform some vocal tasks (sustained vocal phonation, diadochokinetic tasks, production of standardized sentences, free speech) in a single experimental session at the enrolment. Voice recordings will be automatically proceeded to derive acoustic voice features, used as input for the machine learning classification algorithm. The evaluation of the participants to characterize the studied sample is carried out with the collection of anamnestic and clinical data.

Eligibility

Inclusion Criteria:

  • Patients with a diagnosis of stroke, Parkinson's disease, or amyotrophic lateral sclerosis, or healthy individuals.
  • Age higher than 18 years old.

Exclusion Criteria:

  • Cognitive impairment that do not allow participants to understand the requested vocal tasks.
  • Ear, nose,throat diseases and other disorders able to affect voice quality.

Study details
    Deglutition Disorders
    Neurological Disorder

NCT06219200

Istituti Clinici Scientifici Maugeri SpA

29 January 2024

Step 1 Get in touch with the nearest study center
We have submitted the contact information you provided to the research team at {{SITE_NAME}}. A copy of the message has been sent to your email for your records.
Would you like to be notified about other trials? Sign up for Patient Notification Services.
Sign up

Send a message

Enter your contact details to connect with study team

Investigator Avatar

Primary Contact

  Other languages supported:

First name*
Last name*
Email*
Phone number*
Other language

FAQs

Learn more about clinical trials

What is a clinical trial?

A clinical trial is a study designed to test specific interventions or treatments' effectiveness and safety, paving the way for new, innovative healthcare solutions.

Why should I take part in a clinical trial?

Participating in a clinical trial provides early access to potentially effective treatments and directly contributes to the healthcare advancements that benefit us all.

How long does a clinical trial take place?

The duration of clinical trials varies. Some trials last weeks, some years, depending on the phase and intention of the trial.

Do I get compensated for taking part in clinical trials?

Compensation varies per trial. Some offer payment or reimbursement for time and travel, while others may not.

How safe are clinical trials?

Clinical trials follow strict ethical guidelines and protocols to safeguard participants' health. They are closely monitored and safety reviewed regularly.
Add a private note
  • abc Select a piece of text.
  • Add notes visible only to you.
  • Send it to people through a passcode protected link.