Image

Measurement of Cardiopulmonary Variables After Acute Exposure to High Altitude

Measurement of Cardiopulmonary Variables After Acute Exposure to High Altitude

Recruiting
18 years and older
All
Phase N/A

Powered by AI

Overview

As altitude increases, the availability of oxygen in the air decreases, and just to compensate for this lack, the body increases cardiac and respiratory work and changes blood pressure. But that is not all: at altitude the body's ability to use oxygen is also limited. Thus, there is on one hand less oxygen available, and on the other a lower capacity to use it. All this generates significant alterations at the cardiovascular level, to the point of running possible risks of heart attack, stroke and acute pulmonary edema, particularly for individuals already suffering from cardiovascular disease.

The availability of modern cable cars allows an increasingly large number of individuals, including sedentary people, elderly subjects, and cardiorespiratory patients, to easily and rapidly reach high-altitude locations. Data on what happens on the cardiovascular system at high altitude are relatively scarce, and most experiments in the literature are limited by low sample sizes.

The primary purpose of this study is to assess the characteristics of a large population that acutely reached high altitude at Punta Helbronner (3,466 m above sea level), a location on Mont Blanc that is readily accessible by a 20-minute cableway ride from Courmayeur (Entreves station, 1,300 m, Skyway Monte Bianco). We aim to create a unique database and study correlations between altitude and cardiorespiratory parameters (heart rate, blood pressure, and Hb saturation) by collecting medical history data and biometric measurements in a very large population and to identify subjects most at risk of developing hypoxia at altitude. In a subset of subjects, differences in biometric variables after acute exposure at high altitude (in the transition between the downstream and the upstream measuring station) will be evaluated.

Two biometric multiparametric recording systems (Keito K9; Keito, Barcelona, Spain) were installed at Entreves station as well as at Punta Helbronner. Keito K9 is an automatic multiparametric recoding system for measuring peripheral oxygen saturation SpO2, heart rate HR (pulse oximeter), blood pressure (BP; wrist pressure cuff, automatic), height (laser height meter), weight (scale platform), and body mass index (BMI). Once initiated by the subject with the completion of a cardiology history questionnaire (self-reported), the automated Keito K9 system provides a sequence of vocal and animated directions to guide subjects through the measurements (the subject may elect to abstain from some of the measurements). Upon completion, the system prints a summary receipt for the subject, and the measurements are transmitted through a Wi-Fi network and collected in an Excel sheet.

It should be noted that all data collected will be anonymized or not traceable to the subject, through the use of a disposable identification card (for subjects who will perform both downstream and upstream measurement).

Eligibility

Inclusion Criteria:

  • Age ≥ 18 years

Exclusion Criteria:

  • Age < 18 years

Study details
    High Altitude Effects

NCT05769140

Centro Cardiologico Monzino

18 February 2024

Step 1 Get in touch with the nearest study center
We have submitted the contact information you provided to the research team at {{SITE_NAME}}. A copy of the message has been sent to your email for your records.
Would you like to be notified about other trials? Sign up for Patient Notification Services.
Sign up

Send a message

Enter your contact details to connect with study team

Investigator Avatar

Primary Contact

  Other languages supported:

First name*
Last name*
Email*
Phone number*
Other language

FAQs

Learn more about clinical trials

What is a clinical trial?

A clinical trial is a study designed to test specific interventions or treatments' effectiveness and safety, paving the way for new, innovative healthcare solutions.

Why should I take part in a clinical trial?

Participating in a clinical trial provides early access to potentially effective treatments and directly contributes to the healthcare advancements that benefit us all.

How long does a clinical trial take place?

The duration of clinical trials varies. Some trials last weeks, some years, depending on the phase and intention of the trial.

Do I get compensated for taking part in clinical trials?

Compensation varies per trial. Some offer payment or reimbursement for time and travel, while others may not.

How safe are clinical trials?

Clinical trials follow strict ethical guidelines and protocols to safeguard participants' health. They are closely monitored and safety reviewed regularly.
Add a private note
  • abc Select a piece of text.
  • Add notes visible only to you.
  • Send it to people through a passcode protected link.