Image

Exopulse Mollii Suit, Motor Functions & CP Children With Cerebral Palsy

Exopulse Mollii Suit, Motor Functions & CP Children With Cerebral Palsy

Recruiting
5-12 years
All
Phase N/A

Powered by AI

Overview

Cerebral Palsy (CP) is is estimated to be around 1.5-3 per live birth, with prenatal factors accounting for 75% of cases. CP appears in early childhood and persists with age and is characterized by permanent lesions or abnormalities affecting the immature brain. It mainly occurs as a motor system disorder (e.g., abnormal movements or posture) with the presence of hemiplegia, diplegia or tetraplegia, and spastic, dyskinetic or atactic syndromes. .This study will explore the potential clinical benefits of the Molliimethod in children with cerebral palsy. Spasticity impacts balance and mobility, halts the patients quality of life and their ability to perform their activity of daily living, and could also increase the risk of fractures and falls. Available interventions that aim on improving spasticity are facing limitations such as varios side effects. Therefore, developing novel therapies such as the EXOPULSE Mollii Suit could help to overcome such limitations and noninvasively improve balance, mobility, quality of life and reduce spasticity and pain in children with CP.

Description

Cerebral Palsy is a heterogenous group of disorders that was first introduced in the literature in 1843 by Little who described musculoskeletal deformities and spastic limbs in the context of neonatal hypoxia. The clinical classification of CP could be based on several system. For instance, the classification by Balf and Ingram takes into account the type, lesion location and severity of the clinical symptoms, and entails the following CP types that could be further considered as mild, moderate or severe: diplegia, hemiplegia or tetraplegia with the presence of spastic syndromes, dyskinetic syndromes and ataxia. In the context of CP, spasticity is a frequent and debilitating symptom that could occur in 70-89% of individuals. Spasticity could subsequently alter the development of motricity, quality of life, patients' self-es-teem and seems to be associated with several health consequences, namely pain, infections, joint deformities, thrombosis and bedsores. Managing spasticity in CP include the combination of pharmacotherapy, motor rehabilitation, and surgical interventions. It is now widely accepted that spasticity impacts balance and mobility, halts the patients quality of life (e.g., urinary symptoms, sexual dysfunction, mood symptoms, low self-esteem) and their ability to perform their activity of daily living, and could also increase the risk of fractures and falls. The available interventions targeting spasticity are faced with some limitations. For instance, botulinum toxin injection does not seem to improve motor functions and quality of life as well as available oral agents are challenged by their potential side effects. Therefore, developing novel therapies would help to overcome the actual limitations. Transcutaneous Electrical Nerve Stimulation (TENS) has proven some efficacy in spasticity management. However, one should note that practical difficulties could arise when using TENS at home or in clinical practice (i.e., correctly attaching electrodes). To overcome these limitations, the Exopulse Mollii Suit has been developed by Exoneural Network AB (initially Inerventions AB), a Swedish medtech company. It represents an innovative approach for non-invasive electrostimulation to reduce spasticity and improve motor function. Based on the theoretical and practical background outlined above, this study will explore the potential clinical benefits of the Mollii-method in children with cerebral palsy. The overall aim of this study is to evaluate the short-term impact of Exopulse Mollii Suit on balance in pediatric patients with cerebral palsy who are suffering from spasticity as well as assessing the effects of Exopulse Mollii Suit on spasticity, mobility, pain, and quality of life.

Eligibility

Inclusion Criteria:

Patients will be included if they

  • are between 5 and 12 years of age.
  • have a clinical diagnosis of unilateraal or bilateral spastic CP by birth [15].
  • have a PBS score between a minimum of 15 and a maxmimum of 44 points.
  • are able to walk freely, with slight limitation or using ancillary equipment's (GMFCS score ≤3) [49].
  • are German speakers, able to understand verbal instructions.
  • have spasticity with a score of at least 1+ on the MAS

Exclusion Criteria:

Patients will not be included if they

  • are included in another research protocol during the study period.
  • are unable to undergo clinical procedures for the study purposes due to geographical or social reasons.
  • have a cardiac stimulator, a ventriculoperitoneal shunt, intrathecal baclofen pump.
  • have a change in their pharmacological therapy over the last three months or are planning to do so during the study.
  • suffer from other somatic or neuropsychiatric diagnoses (e.g., arrhythmias, uncontrolled epilepsy, diseases causing osteoarticular and muscular pain).
  • have a body mass index above 35 kg/m2,
  • have contraindications to wearing Exopulse Mollii Suit, receive a medical device other than Exopulse Mollii during the study period.
  • have received botulinum toxin (botox) therapy in the last 3 months before the start of the study

Study details
    Cerebral Palsy
    Spasticity
    Muscle
    Pain Syndrome
    Hemiplegia
    Diplegia
    Tetraplegia
    Balance

NCT05885139

Exoneural Network AB

18 February 2024

Step 1 Get in touch with the nearest study center
We have submitted the contact information you provided to the research team at {{SITE_NAME}}. A copy of the message has been sent to your email for your records.
Would you like to be notified about other trials? Sign up for Patient Notification Services.
Sign up

Send a message

Enter your contact details to connect with study team

Investigator Avatar

Primary Contact

  Other languages supported:

First name*
Last name*
Email*
Phone number*
Other language

FAQs

Learn more about clinical trials

What is a clinical trial?

A clinical trial is a study designed to test specific interventions or treatments' effectiveness and safety, paving the way for new, innovative healthcare solutions.

Why should I take part in a clinical trial?

Participating in a clinical trial provides early access to potentially effective treatments and directly contributes to the healthcare advancements that benefit us all.

How long does a clinical trial take place?

The duration of clinical trials varies. Some trials last weeks, some years, depending on the phase and intention of the trial.

Do I get compensated for taking part in clinical trials?

Compensation varies per trial. Some offer payment or reimbursement for time and travel, while others may not.

How safe are clinical trials?

Clinical trials follow strict ethical guidelines and protocols to safeguard participants' health. They are closely monitored and safety reviewed regularly.
Add a private note
  • abc Select a piece of text.
  • Add notes visible only to you.
  • Send it to people through a passcode protected link.