Image

A User-friendly, Non-invasive Neuro-orthosis That Restores Volitionally Controlled Grasp Functions for SCI Survivors With Tetraplegia

A User-friendly, Non-invasive Neuro-orthosis That Restores Volitionally Controlled Grasp Functions for SCI Survivors With Tetraplegia

Recruiting
22 years and older
All
Phase N/A

Powered by AI

Overview

The goal of this pilot clinical study is to investigate the NeuroLife EMG-FES Sleeve System, a closed-loop approach to functional electrical stimulation, in adults (n=12) with chronic (>12 months) tetraplegia due to spinal cord injury. Briefly, the NeuroLife EMG-FES System is a completely non-invasive system (surface electrodes only, no implantable components) worn on the forearm which has up to 160 electrodes that can record electromyography (EMG), or muscle activity, and also electrically stimulate (FES) muscles. The main questions this study aims to answer are: 1) What is the safety, feasibility, and early efficacy of the NeuroLife EMG-FES system on upper extremity outcomes in chronic SCI survivors with tetraplegia, and 2) Can EMG be used as a biomarker of recovery over time in chronic SCI participants undergoing rehabilitation? Participants will complete an intensive, task-oriented rehabilitation protocol using the NeuroLife EMG-FES System (3x/week x 12 weeks) in an outpatient setting. We will assess functional outcomes using standardized clinical measures of hand and arm function at six timepoints.

Description

In our prior work, members of our study team found that residual, sub-movement threshold EMG signals can be measured reliably from the forearm of chronically paralyzed individuals with spinal cord injury (SCI) using the NeuroLife EMG-FES System, and that EMG can be used to discriminate multiple attempted hand movements to drive continuous control of functional electrical stimulation (FES). Briefly, the NeuroLife EMG-FES System is a completely non-invasive system (surface electrodes only, no implantable components) worn on the forearm of participants and has up to 160 electrodes that can record electromyography (EMG), or muscle activity, and also electrically stimulate (FES) muscles. This allows users to attempt a movement and, even in the absence of physical movement, the system can detect what they are trying to do and electrically stimulate the muscles they are attempting to use. We hypothesize that this ability to control the system with participant's own muscle signals will assist in improving and restoring hand function of SCI survivors with tetraplegia. Furthermore, preliminary studies have suggested the potential for motor-intention driven FES to promote functional recovery after system use. With the dual-purpose use as a functional orthosis and as a rehabilitation tool for restoration of hand function, the NeuroLife EMG-FES System is poised to transform the state of care for those with hand impairment due to SCI.

The overarching goal of this proposal is to investigate the safety, feasibility, and early efficacy of the NeuroLife EMG-FES system on upper extremity outcomes in chronic SCI survivors with tetraplegia. A pilot clinical trial will allow us to test the following aims: Aim 1. Determine the early efficacy of using the NeuroLife EMG-FES System as a functional orthosis to complete functional activities after 12 weeks of task practice using the system. Aim 2. Determine the early efficacy of using the NeuroLife EMG-FES System as a rehabilitation tool to improve sensorimotor function after 12 weeks of task practice using the system. Aim 3. Develop and establish EMG-based biomarkers of neuroplasticity and recovery after chronic SCI.

We plan to conduct a pilot clinical trial investigating the NeuroLife EMG-FES Sleeve System in adults (n=12) with chronic (>12 months) tetraplegia due to spinal cord injury. Briefly, the NeuroLife EMG-FES System is a completely non-invasive system (surface electrodes only, no implantable components) worn on the forearm of participants and has up to 160 electrodes that can record electromyography (EMG), or muscle activity, and also electrically stimulate (FES) muscles. Using this combined, closed-loop technology participants will complete a 12-week protocol with a study therapist practicing functional activities using their hand/forearm while wearing the NeuroLife EMG-FES Sleeve System. We will assess functional outcomes using standardized clinical measures at 6 timepoints (double baseline, 4 weeks, 8 weeks, post-intervention, and 4 weeks post-intervention). At these timepoints we will also collect high-definition EMG data using the NeuroLife EMG-only system to investigate the ability to use EMG as a biomarker of recovery over time in chronic SCI participants undergoing rehabilitation.

Eligibility

Inclusion Criteria:

  1. age 22 years or older
  2. sustained a chronic (>12 months) cervical SCI (AIS A, B, C, or D) and is currently medically stable
  3. unable to grasp and manipulate objects to allow independent performance of activities of daily living (e.g., Tetraplegia)
  4. retain voluntary ability to enact unilateral shoulder and elbow movements either independently or with a mobile arm support
  5. Willing and able to attend study sessions in Columbus, Ohio for 12 weeks, 3x/week and all assessment sessions (4 weeks prior to and 4 weeks following 12-week intervention protocol)
  6. able to provide informed consent.

Exclusion Criteria:

  1. medical contraindications to FES (e.g., pacemaker or other implanted devices, uncontrolled seizure disorder, cancer or open wounds on hands)
  2. severe, uncontrolled autonomic dysreflexia
  3. comorbid medical condition that, in the opinion of the PI, that may impact participant safety or study results
  4. severe upper extremity spasticity or contractures that prevent FES-evoked wrist and finger movements
  5. ventilator dependent
  6. pregnant or plan to become pregnant (females only)
  7. actively participating in upper extremity rehabilitation.

Study details
    Cervical Spinal Cord Injury

NCT06087445

Ohio State University

28 January 2024

Step 1 Get in touch with the nearest study center
We have submitted the contact information you provided to the research team at {{SITE_NAME}}. A copy of the message has been sent to your email for your records.
Would you like to be notified about other trials? Sign up for Patient Notification Services.
Sign up

Send a message

Enter your contact details to connect with study team

Investigator Avatar

Primary Contact

  Other languages supported:

First name*
Last name*
Email*
Phone number*
Other language

FAQs

Learn more about clinical trials

What is a clinical trial?

A clinical trial is a study designed to test specific interventions or treatments' effectiveness and safety, paving the way for new, innovative healthcare solutions.

Why should I take part in a clinical trial?

Participating in a clinical trial provides early access to potentially effective treatments and directly contributes to the healthcare advancements that benefit us all.

How long does a clinical trial take place?

The duration of clinical trials varies. Some trials last weeks, some years, depending on the phase and intention of the trial.

Do I get compensated for taking part in clinical trials?

Compensation varies per trial. Some offer payment or reimbursement for time and travel, while others may not.

How safe are clinical trials?

Clinical trials follow strict ethical guidelines and protocols to safeguard participants' health. They are closely monitored and safety reviewed regularly.
Add a private note
  • abc Select a piece of text.
  • Add notes visible only to you.
  • Send it to people through a passcode protected link.