Image

Electrochemical Behavior of Biomedical Alloys Exposed to Human Synovial Fluid

Recruiting
18 years of age
Both
Phase N/A

Powered by AI

Overview

Biomedical implant metals are reactive when in contact with body fluids. Some reactions may adverse the biocompatibility character of the material and should be studied. This can be achieved by direct measurement through electrochemical, gravimetric, spectrophotometric and surface analysis of reaction occurring at the interface between functionalized metal samples and body fluids (synovia) directly extracted from patients.

The general aim of this project is to contribute to develop a comprehensive vision of interfacial reactions occurring on biomedical alloy surfaces exposed to human synovial fluid and to link them to clinical data

Description

Most widely used biomedical materials are polymeric, ceramics and metals. Among these materials, metals exhibit a unique combination of mechanical strength, toughness, wear resistance and forming easiness. Metals are chemically reactive when in contact with body fluids. While some of the reactions are welcome, such as the surface oxidation providing corrosion protection, other reactions may adverse the biocompatibility character of the material.The understanding of these reactions is the object of several studies. Corrosion scientists try to characterise the corrosion response of metals when in contact with simulated body fluids in order to verify the occurrence of hypothetical mechanisms. Biologists look at specific reaction products expected to be released by cells when set in contact with structured or functionalized surfaces. These approaches are necessary but also time consuming due to the complexity of possible reaction mechanisms. As complement to these deductive approaches we propose here an inductive one based on direct measurement through electrochemical, gravimetric, spectrophotometric and surface analysis of reaction occurring at the interface between functionalized metal samples and body fluids (synovia) directly extracted from patients.

The general aim of this project is to contribute to develop a comprehensive vision of interfacial reactions occurring on biomedical alloy surfaces exposed to human synovial fluid and to link them to clinical data. This will be achieved through a collaboration between surgeons and corrosion scientists. The synovial fluid will be extracted form patients using an established procedure and transferred to a portable sterile corrosion laboratory located close to the surgery room. There, surface reaction will be characterized using electrochemical methods already successfully applied in recent studies carried out by the same team. We will be integrating in-situ quartz crystal microgravimetry and in-situ Raman spectroscopy as well as ex-situ methods. Further, metal surfaces will be chemically functionalized (wettability, oxidation, surface charge) in order to selectively influence specific reactions of body fluid components (i.e. adsorption depends on surface energy and wettability while Redox reactions are influenced by the oxidation state of the surface. The acquired information will be compared to the clinical state of the patient in order to establish possible correlations between interface reactivity and patient state.

Eligibility

Inclusion Criteria:

  • indication to knee joint puncture
  • Written consent

Exclusion Criteria:

  • refusing to sign written consent
  • patient unabled to have a follow-up by their own surgeon/doctor

Study details

Arthroplasty, Replacement, Knee, Osteoarthritis, Knee

NCT04027231

Brigitte Jolles, MD

28 January 2024

Step 1 Get in touch with the nearest study center
What happens next?
  • You can expect the study team to contact you via email or phone in the next few days.
  • Sign up as volunteer  to help accelerate the development of new treatments and to get notified about similar trials.

You are contacting

Investigator Avatar

Primary Contact

site

FAQs

Learn more about clinical trials

What is a clinical trial?

A clinical trial is a study designed to test specific interventions or treatments' effectiveness and safety, paving the way for new, innovative healthcare solutions.

Why should I take part in a clinical trial?

Participating in a clinical trial provides early access to potentially effective treatments and directly contributes to the healthcare advancements that benefit us all.

How long does a clinical trial take place?

The duration of clinical trials varies. Some trials last weeks, some years, depending on the phase and intention of the trial.

Do I get compensated for taking part in clinical trials?

Compensation varies per trial. Some offer payment or reimbursement for time and travel, while others may not.

How safe are clinical trials?

Clinical trials follow strict ethical guidelines and protocols to safeguard participants' health. They are closely monitored and safety reviewed regularly.
Add a private note
  • abc Select a piece of text.
  • Add notes visible only to you.
  • Send it to people through a passcode protected link.