Image

Confocal Laser Endomicroscopy VERification

Confocal Laser Endomicroscopy VERification

Recruiting
18 years and older
All
Phase N/A

Powered by AI

Overview

The goal of this multi-center randomized clinical trial is to evaluate the added value of needle based confocal laser endomicroscopy (nCLE)-imaging to regular diagnostic bronchoscopic peripheral lung lesion analysis on the diagnostic yield in patients with peripheral pulmonary nodules suspect for malignancy.

The main question[s] it aims to answer are:

To determine if the addition of nCLE-imaging to conventional diagnostic bronchoscopic peripheral lung lesion analysis results in an improved diagnostic yield (defined as the proportion of patients in whom the bronchoscopic procedure results in a definitive diagnosis out of the total number of patients that have received the diagnostic bronchoscopic procedure).

Participants will undergo diagnostic bronchoscopy either with or without the addition of nCLE imaging before each TBNA. Based on the feedback of the CLE images on (in)correct placement of the needle, the needle might be repositioned before sampling. Comparison between the diagnostic yield of these groups will be done including subgroup analysis.

Description

Rationale: Lung cancer screening and the increasing use of chest-computed tomography (CT) has led to an increase in the number of (incidental) found suspected malignant lung lesions. Since tissue acquisition for pathological analysis is prerequisite for diagnosis and optimal treatment, a drastic increase in the number of patients that need to undergo bronchoscopy is expected.

Over 70% of the suspected lesions develop in the periphery of the lung and are therefore not visible during conventional bronchoscopy. Although several bronchoscopic navigational techniques demonstrated an improved navigation towards the target lesion, the diagnostic yield remains suboptimal due to a substantial near-miss rate. As a result, the need for complementary bronchoscopic guidance that provides real-time feedback on the correct positioning of the biopsy instruments is urgent.

Needle-based Confocal laser endomicroscopy (nCLE) is a novel high-resolution imaging technique that uses an excitation laser light to create 'real-time' microscopic images of tissues. nCLE can be integrated into the biopsy needle, allowing real-time cancer detection at the tip of the biopsy needle during bronchoscopy. The confocal microscope captures autofluorescence of tissues or, combined with intravenously (IV) infused fluorophores (such as fluorescein) allows imaging of individual tumor cells. Recent studies on nCLE-imaging in lung tumors and metastatic lymph nodes have identified and validated nCLE criteria for malignancy (enlarged pleomorphic cells, dark clumps and directional streaming) and airway/lung parenchyma (alveoli, elastin fibres of the conducting airway, bronchial epithelium and still image) and granulomas. A recent study demonstrated that these nCLE-criteria can be used in real-time to fine-tune the needle positioning during ongoing bronchoscopy and thereby potentially improve the diagnostic yield.

This randomized controlled trials aims to evaluate the added value of nCLE-imaging (smart needle) to the conventional used bronchoscopic approach for peripheral lung lesion analysis.

Objective: This multicenter, randomized controlled trial, aims to investigate if nCLE-imaging integrated with conventional bronchoscopy results in a higher diagnostic yield compared to conventional bronchoscopy without nCLE in the diagnosis of peripheral lung nodules.

Study design: Investigator-initiated, international, multi-center randomized controlled trial including university and general hospitals.

Study population: Patients (>18 years old) with suspected malignant peripheral lung lesions with an indication for bronchoscopic analysis.

Procedure: Bronchoscopy will be performed according to institutional practice, including radial endobronchial ultrasound (r-EBUS) and optionally fluoroscopy, electromagnetic navigation, virtual bronchoscopy and/or ultrathin bronchoscopy. This is followed by transbronchial needle aspiration (TBNA) and (cryo-)biopsies (control arm). In the study arm, nCLE-imaging will be added prior to TBNA tissue acquisition to fine-tune the sampling area. Cytology staining for rapid onsite evaluation (ROSE) and cellblock will be performed according to local practice.

Primary objective:

To determine if the addition of nCLE-imaging to conventional bronchoscopic peripheral lung lesion analysis results in an improved diagnostic yield. (defined as the proportion of patients in whom the bronchoscopic procedure results in a definitive diagnosis out of the total number of patients that have received the diagnostic bronchoscopic procedure).

Eligibility

Inclusion Criteria:

  1. ≥18 years of age
  2. Suspected malignant peripheral lung lesion with an indication for a bronchoscopic diagnostic work-up as determined by the attending physician or tumor board. Peripheral pulmonary lesions are defined as lesions located beyond the visible segmental bronchi, not detectable by regular flexible bronchoscopy
  3. Bronchus sign on pre-procedural CT or estimated confidence for successful navigation to the nodule resulting in a r-EBUS signal
  4. Solid part of the lesion must be ≧10 mm
  5. Largest dimension of lesion size on CT ≦30 mm (long-axis)
  6. Ability to understand and willingness to sign a written informed consent

Exclusion Criteria:

  1. Inability or non-willingness to provide informed consent
  2. Endobronchial visible malignancy on bronchoscopic inspection
  3. Target lesion within reach of the linear EBUS scope
  4. Failure to comply with the study protocol
  5. Known allergy or risk factors for an allergic reaction to fluorescein
  6. Pregnancy or breastfeeding
  7. Hemodynamic instability
  8. Refractory hypoxemia
  9. Therapeutic anticoagulant use that cannot be withheld for an appropriate interval before the procedure
  10. Unable to tolerate general anesthesia according to the anesthesiologist
  11. Undergoing chemotherapy as several chemotherapies have fluorescent properties at the same wavelength (e.g., doxorubicin)

Study details
    Lung Cancer
    Lung Neoplasm Malignant
    Carcinoma
    Non-Small-Cell Lung
    Neoplasm of Lung

NCT06079970

Amsterdam University Medical Centers (UMC), Location Academic Medical Center (AMC)

27 January 2024

Step 1 Get in touch with the nearest study center
We have submitted the contact information you provided to the research team at {{SITE_NAME}}. A copy of the message has been sent to your email for your records.
Would you like to be notified about other trials? Sign up for Patient Notification Services.
Sign up

Send a message

Enter your contact details to connect with study team

Investigator Avatar

Primary Contact

  Other languages supported:

First name*
Last name*
Email*
Phone number*
Other language

FAQs

Learn more about clinical trials

What is a clinical trial?

A clinical trial is a study designed to test specific interventions or treatments' effectiveness and safety, paving the way for new, innovative healthcare solutions.

Why should I take part in a clinical trial?

Participating in a clinical trial provides early access to potentially effective treatments and directly contributes to the healthcare advancements that benefit us all.

How long does a clinical trial take place?

The duration of clinical trials varies. Some trials last weeks, some years, depending on the phase and intention of the trial.

Do I get compensated for taking part in clinical trials?

Compensation varies per trial. Some offer payment or reimbursement for time and travel, while others may not.

How safe are clinical trials?

Clinical trials follow strict ethical guidelines and protocols to safeguard participants' health. They are closely monitored and safety reviewed regularly.
Add a private note
  • abc Select a piece of text.
  • Add notes visible only to you.
  • Send it to people through a passcode protected link.