Image

Optimal PEEP Titration Combining Transpulmonary Pressure Measurement and Electric Impedance Tomography

Optimal PEEP Titration Combining Transpulmonary Pressure Measurement and Electric Impedance Tomography

Recruiting
18-99 years
All
Phase N/A

Powered by AI

Overview

Diagnosis and treatment of the hypoxic respiratory failure induced by severe atelectasis with the background of acute lung injury is challenging for the intensive care physicians. Mechanical ventilation commenced with grave hypoxemia is one of the most common organ support therapies applied in the critically ill. However, respiratory therapy can improve gas exchange until the elimination of the damaging pathomechanism and the regeneration of the lung tissue, mechanical ventilation is a double edge sword. Mechanical ventilation induced volu- and barotrauma with the cyclic shearing forces can evoke further lung injury on its own.

Computer tomography (CT) of the chest is still the gold standard in the diagnostic protocols of the hypoxemic respiratory failure. However, CT can reveal scans not just about the whole bilateral lung parenchyma but also about the mediastinal organs, it requires the transportation of the critically ill and exposes the patient to extra radiation. At the same time the reproducibility of the CT is poor and it offers just a snapshot about the ongoing progression of the disease. On the contrary electric impedance tomography (EIT) provides a real time, dynamic and easily reproducible information about one lung segment at the bed side. At the same time these picture imaging techniques are supplemented by the pressure parameters and lung mechanical properties assigned and displayed by the ventilator. The latter can be ameliorated by the measurement of the intrapleural pressure. Through with this extra information transpulmonary pressure can be estimated what directly effects the alveoli.

Unfortunately, parameters measured by the respirator provide only a global status about the state of the lungs. On the contrary acute lung injury is characterized by focal injuries of the lung parenchyma where undamaged alveoli take part in the gas exchange next to the impaired ones. EIT can aim the identification of these lesions by the assessment of the focal mechanical properties when parameters measured by the ventilator are also involved. The latter one can not just take a role in the diagnosis but with the support of it the effectivity of the alveolar recruitment can be estimated and optimal ventilator parameters can be determined preventing further damage caused by the mechanical stress.

Description

Following PEEP increment and decrement alveolar recruitment manoeuvre optimal PEEP would be assessed by transpulmonary pressure measurement to keep open up the lung. Physicians are lack of data at which pressure the most alveoli are recruited and if 40 cmH2O of pressure is really required for complete recruitment. By CT scan of chest and continuous EIT measurement rate of recruitment would be assessed.

Eligibility

Inclusion Criteria:

  • Orotracheally intubated patients ventilated in volume control mode with moderate and severe hypoxic respiratory failure according to the ARDS Berlin definition.
  • 100 Hgmm ≤ PaO2/FiO2 ≤ 200 Hgmm, PEEP ≥ 5 cmH2O (moderate) or PaO2/FiO2 ≤ 100 Hgmm, PEEP ≥ 5 cmH2O (sever)

Exclusion Criteria:

  • age under 18
  • pregnancy
  • pulmonectomy, lung resection in the past medical history
  • clinically end stage COPD
  • sever hemodynamic instability (vasopressor refractory shock)
  • sever bullous emphysema and/or spontaneous pneumothorax in the past medical history
  • chest drainage in situ due to pneumothorax and/or bronchopleural fistula
  • contraindication of the application of oesophageal balloon catheter (oesophageal ulcer, oesophageal perforation, oesophageal diverticulosis, oesophageal cancer, oesophageal varices, recent operation on oesophagus and/or stomach, sever coagulopathy)

Study details
    ARDS
    Human

NCT04174014

Szeged University

14 October 2025

Step 1 Get in touch with the nearest study center
We have submitted the contact information you provided to the research team at {{SITE_NAME}}. A copy of the message has been sent to your email for your records.
Would you like to be notified about other trials? Sign up for Patient Notification Services.
Sign up

Send a message

Enter your contact details to connect with study team

Investigator Avatar

Primary Contact

  Other languages supported:

First name*
Last name*
Email*
Phone number*
Other language

FAQs

Learn more about clinical trials

What is a clinical trial?

A clinical trial is a study designed to test specific interventions or treatments' effectiveness and safety, paving the way for new, innovative healthcare solutions.

Why should I take part in a clinical trial?

Participating in a clinical trial provides early access to potentially effective treatments and directly contributes to the healthcare advancements that benefit us all.

How long does a clinical trial take place?

The duration of clinical trials varies. Some trials last weeks, some years, depending on the phase and intention of the trial.

Do I get compensated for taking part in clinical trials?

Compensation varies per trial. Some offer payment or reimbursement for time and travel, while others may not.

How safe are clinical trials?

Clinical trials follow strict ethical guidelines and protocols to safeguard participants' health. They are closely monitored and safety reviewed regularly.
Add a private note
  • abc Select a piece of text.
  • Add notes visible only to you.
  • Send it to people through a passcode protected link.