Image

Choice of Anesthesia in Microelectrode Recording Guided Deep Brain Stimulation for Parkinson's Disease

Choice of Anesthesia in Microelectrode Recording Guided Deep Brain Stimulation for Parkinson's Disease

Recruiting
50-80 years
All
Phase N/A

Powered by AI

Overview

Subthalamic nucleus (STN)-deep brain stimulation (DBS) under general anesthesia has been applied to PD patients who cannot tolerate awake surgery, but general anesthesia will affect the electrical signal in microelectrode recording (MER) to some degree. This study is a prospective randomized controlled, noninferiority study, open label, endpoint outcome evaluator blinded, two-arm study. Parkinson's disease patients undergoing STN-DBS are randomly divided into a conscious sedation group (dexmedetomidine) and a general anesthesia group (desflurane). Normalized root mean square (NRMS) is used to compare the difference of neuronal activity between the two groups. The primary outcome is the percentage of high NRMS recorded by the MER signal (with the average NRMS recorded by MER after entering the STN greater than 2.0). The secondary outcomes are the NRMS, length of the STN, number of MER tracks, and differences in clinical outcomes 6 months after the operation.

Description

STN-DBS under general anesthesia has been applied to PD patients who cannot tolerate awake surgery, but general anesthesia will affect the electrical signal in microelectrode recording (MER) to some degree. At present, there are some studies on the effects of desflurane on neuronal signal amplitude and discharge characteristics during STN-DBS in PD patients but there is no definite conclusion.

This study compares the influence of MER mapping during STN-DBS and the differences in postoperative clinical outcomes between desflurane general anesthesia and conscious sedation anesthesia to explore alternative anesthesia for DBS in PD patients who cannot tolerate local anesthesia or conscious sedation and to provide feasible anesthesia techniques for the application of MER during DBS under general anesthesia.

This study is a prospective randomized controlled, noninferiority study, open label, endpoint outcome evaluator blinded, two-arm study. Parkinson's disease patients undergoing STN-DBS are randomly divided into a conscious sedation group (dexmedetomidine) and a general anesthesia group (desflurane). The primary outcome is the percentage of high NRMS recorded by the MER signal (with the average NRMS recorded by MER after entering the STN greater than 2.0), which is used to compare the differences in neuronal electrical activities between conscious sedation and general anesthesia via desflurane groups. The secondary outcomes are the NRMS, length of the subthalamic nucleus, number of MER tracks, and differences in clinical outcomes 6 months after the operation.

Eligibility

Inclusion Criteria:

        1.50-80 years old, ASA grade II-III; 2.Bilateral STN-DBS of patients with Parkinson's
        disease; 3.Signed informed consent.
        Exclusion Criteria:
          1. Obstructive sleep apnea;
          2. BMI > 30kg/m2;
          3. Estimated difficult airway;
          4. Severe preoperative anxiety;
          5. Serious dysfunction of important organs (i.e. heart failure, renal or liver
             dysfunction)
          6. A history of allergy to the anaesthetics.

Study details
    PD - Parkinson's Disease
    Dexmedetomidine
    Desflurane
    Deep Brain Stimulation

NCT05550714

Beijing Tiantan Hospital

27 January 2024

Step 1 Get in touch with the nearest study center
We have submitted the contact information you provided to the research team at {{SITE_NAME}}. A copy of the message has been sent to your email for your records.
Would you like to be notified about other trials? Sign up for Patient Notification Services.
Sign up

Send a message

Enter your contact details to connect with study team

Investigator Avatar

Primary Contact

  Other languages supported:

First name*
Last name*
Email*
Phone number*
Other language

FAQs

Learn more about clinical trials

What is a clinical trial?

A clinical trial is a study designed to test specific interventions or treatments' effectiveness and safety, paving the way for new, innovative healthcare solutions.

Why should I take part in a clinical trial?

Participating in a clinical trial provides early access to potentially effective treatments and directly contributes to the healthcare advancements that benefit us all.

How long does a clinical trial take place?

The duration of clinical trials varies. Some trials last weeks, some years, depending on the phase and intention of the trial.

Do I get compensated for taking part in clinical trials?

Compensation varies per trial. Some offer payment or reimbursement for time and travel, while others may not.

How safe are clinical trials?

Clinical trials follow strict ethical guidelines and protocols to safeguard participants' health. They are closely monitored and safety reviewed regularly.
Add a private note
  • abc Select a piece of text.
  • Add notes visible only to you.
  • Send it to people through a passcode protected link.