Image

Fluorodopa F 18 in Congenital Hyperinsulinism and Insulinoma

Fluorodopa F 18 in Congenital Hyperinsulinism and Insulinoma

Recruiting
18 years and younger
All
Phase 1

Powered by AI

Overview

Low blood sugars are known to cause brain damage in newborn babies. One of the most common causes of low blood sugars persisting beyond the new born period is a condition called congenital hyperinsulinism (HI). This is a disease whereby the pancreas secretes too much insulin and causes low blood sugars. Twenty to forty percent of these babies will have brain damage. There are two forms of this disease. In one form only a small part of the pancreas makes too much insulin (focal HI) and in the other, the whole pancreas make too much insulin (diffuse HI). Another very similar disease is insulinoma which occurs after birth, but also causes hyperinsulinism. If a surgeon could know which part of the pancreas has the focal lesion he could remove it and cure the patient.

The purpose of this study is to investigate whether a new investigational drug called Fluorodopa F 18, when used with a PET scan, can find the focal lesion and guide the surgeon to remove it, thus curing the patient and preventing further brain damage.

Description

Congenital Hyperinsulinism (HI) is a disorder of insulin secretion that causes profound hypoglycemia leading to significant morbidity. It is the most common form of persistent neonatal hypoglycemia, and the most dangerous. Inappropriate insulin secretion causes not only hypoglycemia but also inability to release free fatty acids from adipose tissue and inability to release glycogen from the liver. Hence the brain is deprived of all the major fuel sources (glucose, beta-hydroxybutyrate and lactate) for energy thus leading to the high incidence of brain damage. In up to 50% of cases of congenital hyperinsulinism, medical therapy fails and surgical resection of the pancreas is necessary. Previous techniques developed to differentiate those patients with focal HI in whom surgery could result in a cure are very invasive and put the infants at risk for hypoglycemic brain damage or arterial thrombosis.

It is known that the beta cells in the pancreatic islets, similar to other neuroendocrine tissues, contain amino acid decarboxylase (AADC). Beta cells take up L-Dopa and convert it into dopamine by AADC. It was proposed that as other neuroendocrine tumors such as phaeochromocytoma and carcinoid tumors express AADC and can be very easily visualized using Fluorodopa F 18 PET then so also would the pancreas be easily and accurately visualized. After initial reports demonstrated the effectiveness, safety and accuracy, there have been now over 200 patients with HI reported in the literature who have had Fluorodopa F 18 PET scans with suggestions that referral to major HI centers for Fluorodopa F 18 PET CT is now an integral part of standard of care management of patients with HI that require surgery. Fluorodopa F 18 PET scanning for patients with Hyperinsulinism is now established in Europe and Australia, and has close to 95% sensitivity. When linked to Computed Tomography (CT) image of the pancreas, Fluorodopa F 18 PET allows the surgeon to image the pancreas in three dimensions, to even more accurately identify the site of the focal lesion, increasing the chance of a sufficient partial pancreatectomy to cure the patient.

Similarly, insulinomas are neuroendocrine cell tumors that are typically benign (90%) and very rare occurring in 1-4 per million of the population with > 50% occurring in adults >age 25 years. Biochemical differentiation of insulinomas from congenital hyperinsulinism may be aided by the use of the pro-insulin:insulin ratio, by the age of presentation and by the history. The standard of care for insulinoma is to remove them once identified, rather than long term medical treatment. Current imaging techniques include CT scan pancreas, endoscopic ultrasound of the pancreas and MRI pancreas however despite using these modalities in some patients the insulinoma may not be found. 18F-DOPA has been shown to be superior than MIBG scanning for neuroendocrine tumors such as phaeochromocytoma, but there is very little data in patients with insulinoma. Moreover, patients with MEN 1 and insulinoma may have more than one tumor, which if missed with conventional imaging could result in failure to cure with surgery.

The objectives of this study are:

  1. To determine, using Positron Emission Tomography, whether or not the uptake of a radiopharmaceutical agent, Fluorodopa 18F (18F-DOPA) produced in a cyclotron located at a distance far from the imaging center will produce qualitatively adequate pancreatic images in patients with congenital hyperinsulinism
  2. To determine, using direct comparisons, whether or not Fluorodopa 18F Positron Emission Tomography (18F-DOPA PET) combined with Computed Tomography (CT) will produce pancreatic images matching the gold-standard of histopathological findings at surgery for partial or complete pancreatectomy in the treatment of patients with congenital hyperinsulinism
  3. To determine, using direct comparisons, whether or not Fluorodopa 18F Positron Emission Tomography (18F-DOPA PET) combined with Computed Tomography (CT) will produce pancreatic images matching the gold-standard of histopathological findings at surgery for insulinomas
  4. To determine the best way to interpret the 18F-DOPA PET scans comparing SUV max:SUV sub max at a ratio of the current 1.5, a suggested 1.3 and by using visual inspection of the images.

Eligibility

Inclusion Criteria:

  • Patients with HI attending the Cook Children's Congenital Hyperinsulinism Center and being treated by an Endocrinologist which may be the PI or a partner of this clinician.
  • The patient's Endocrinologist has determined that the patient cannot be safely managed with standard medical therapy (failed) and surgery is recommended to prevent future episodes of severe hypoglycemia and preserve brain function. Failure of medical therapy is defined as both:
    • Hypoglycemia (blood glucose <70 m/dL) on a single measure despite the use of anti-hypoglycemic medications, if applicable to the individual patient, including and limited to diazoxide or octreotide
    • Inability to fast, defined as the inability to maintain a blood glucose >50 mg/dL for: 1) more than 12 hours for infants < 1 year of age; 2) more than 15 hours 1-3 years of age; 3) more than 18 hours over 3 years of age
  • Patients in whom the genetic testing (if available and informative) does not prove

    diffuse HI disease. Such children might be considered if they have one or more of the following situations:

    • no genetic testing results (e.g., due to insurance denial or parental refusal)
    • negative genetic testing (note: only 75% of mutations may be found with existing technology)
    • no autosomal recessive mutations in ABCC8 or KCNJ11 on the maternal allele
    • no autosomal dominant mutations in ABCC8 or KCNJ11
  • Patients thought to have focal HI disease based on genetic testing or insulinoma based

    on clinical evaluation and have well-controlled blood glucose levels with any degree of dietary or medical management, BUT the patient and their parent(s) or LAR wishes to proceed with surgery for a possible cure of HI disease.

Exclusion Criteria:

  • Patients who do not have a diagnosis of HI
  • Patients with genetic evidence of diffuse HI
  • Patients who are pregnant
  • Nursing mothers who are unwilling to discontinue breastfeeding their infant for 48 hours after Fluorodopa F 18 injection
  • Patients with a known allergy to Fluorodopa F 18 agent

Study details
    Congenital Hyperinsulinism
    Insulinoma

NCT02021604

Cook Children's Health Care System

27 January 2024

Step 1 Get in touch with the nearest study center
We have submitted the contact information you provided to the research team at {{SITE_NAME}}. A copy of the message has been sent to your email for your records.
Would you like to be notified about other trials? Sign up for Patient Notification Services.
Sign up

Send a message

Enter your contact details to connect with study team

Investigator Avatar

Primary Contact

  Other languages supported:

First name*
Last name*
Email*
Phone number*
Other language

FAQs

Learn more about clinical trials

What is a clinical trial?

A clinical trial is a study designed to test specific interventions or treatments' effectiveness and safety, paving the way for new, innovative healthcare solutions.

Why should I take part in a clinical trial?

Participating in a clinical trial provides early access to potentially effective treatments and directly contributes to the healthcare advancements that benefit us all.

How long does a clinical trial take place?

The duration of clinical trials varies. Some trials last weeks, some years, depending on the phase and intention of the trial.

Do I get compensated for taking part in clinical trials?

Compensation varies per trial. Some offer payment or reimbursement for time and travel, while others may not.

How safe are clinical trials?

Clinical trials follow strict ethical guidelines and protocols to safeguard participants' health. They are closely monitored and safety reviewed regularly.
Add a private note
  • abc Select a piece of text.
  • Add notes visible only to you.
  • Send it to people through a passcode protected link.