Image

Pervasive Sensing and AI in Intelligent ICU

Pervasive Sensing and AI in Intelligent ICU

Recruiting
18 years and older
All
Phase N/A

Powered by AI

Overview

Important information related to the visual assessment of patients, such as facial expressions, head and extremity movements, posture, and mobility are captured sporadically by overburdened nurses, or are not captured at all. Consequently, these important visual cues, although associated with critical indices such as physical functioning, pain, delirious state, and impending clinical deterioration, often cannot be incorporated into clinical status. The overall objectives of this project are to sense, quantify, and communicate patients' clinical conditions in an autonomous and precise manner, and develop a pervasive intelligent sensing system that combines deep learning algorithms with continuous data from inertial, color, and depth image sensors for autonomous visual assessment of critically ill patients. The central hypothesis is that deep learning models will be superior to existing acuity clinical scores by predicting acuity in a dynamic, precise, and interpretable manner, using autonomous assessment of pain, emotional distress, and physical function, together with clinical and physiologic data.

Description

The under-assessment of pain is one of the primary barriers to the adequate treatment of pain in critically ill patients, and is associated with many negative outcomes such as chronic pain after discharge, prolonged mechanical ventilation, longer ICU stay, and increased mortality risk. Many ICU patients cannot self-report their pain intensity due to their clinical condition, ventilation devices, and altered consciousness. The monitoring of patients' pain status is yet another task for over-worked nurses, and due to pain's subjective nature, those assessments may vary among care staff. These challenges point to a critical need for developing objective and autonomous pain recognition systems. Delirium is another common complication of patient hospitalization, which is characterized by changes in cognition, activity level, consciousness, and alertness and has rates of up to 80% in surgical patients. The risk factors that have been associated with delirium include age, preexisting cognitive dysfunction, vision and hearing impairment, severe illness, dehydration, electrolyte abnormalities, overmedication, alcohol abuse, and disruptions in sleep patterns. Estimates show that about one third of delirium cases can benefit from drug and non-drug prevention and intervention. However, detecting and predicting pain and delirium is still very limited in practice.

The aim of this study is to evaluate the ability of the investigators' proposed model to leverage accelerometer, environmental, circadian rhythm biomarkers, and video data in autonomously quantifying pain, characterizing functional activities, and delirium status. The Autonomous Delirium Monitoring and Adaptive Prevention (ADAPT) system will use novel pervasive sensing and deep learning techniques to autonomously quantify patients' mobility and circadian dyssynchrony in terms of nightly disruptions, light intensity, and sound pressure level. This will allow for the integration of these risk factors into a dynamic model for predicting delirium trajectories. Commercially available cameras will be used to monitor patients' facial expressions and contextualize patients' actions by providing imaging data to provide additional patient movement information. Commercially available environmental sensors will be used to provide data on illumination, decibel level, and air quality. Patient blood samples will help determine their circadian rhythm and compare and validate the pervasive sensing system's capabilities of autonomously monitoring circadian dyssynchrony. Electronic health record data will also be collected.

Eligibility

Inclusion Criteria:

  • aged 18 or older
  • admitted to UF Health Shands Gainesville ICU ward
  • expected to remain in ICU ward for at least 24 hours at time of screening

Exclusion Criteria:

  • under the age of 18
  • on any contact/isolation precautions
  • expected to transfer or discharge from the ICU in 24 hours or less
  • unable to provide self-consent or has no available proxy/LAR

Study details
    Critical Illness
    Pain
    Delirium
    Confusion

NCT05127265

University of Florida

25 June 2024

Step 1 Get in touch with the nearest study center
We have submitted the contact information you provided to the research team at {{SITE_NAME}}. A copy of the message has been sent to your email for your records.
Would you like to be notified about other trials? Sign up for Patient Notification Services.
Sign up

Send a message

Enter your contact details to connect with study team

Investigator Avatar

Primary Contact

  Other languages supported:

First name*
Last name*
Email*
Phone number*
Other language

FAQs

Learn more about clinical trials

What is a clinical trial?

A clinical trial is a study designed to test specific interventions or treatments' effectiveness and safety, paving the way for new, innovative healthcare solutions.

Why should I take part in a clinical trial?

Participating in a clinical trial provides early access to potentially effective treatments and directly contributes to the healthcare advancements that benefit us all.

How long does a clinical trial take place?

The duration of clinical trials varies. Some trials last weeks, some years, depending on the phase and intention of the trial.

Do I get compensated for taking part in clinical trials?

Compensation varies per trial. Some offer payment or reimbursement for time and travel, while others may not.

How safe are clinical trials?

Clinical trials follow strict ethical guidelines and protocols to safeguard participants' health. They are closely monitored and safety reviewed regularly.
Add a private note
  • abc Select a piece of text.
  • Add notes visible only to you.
  • Send it to people through a passcode protected link.