Image

Linking Brain Network Dynamics to Imminent Smoking Lapse Risk and Behavior

Linking Brain Network Dynamics to Imminent Smoking Lapse Risk and Behavior

Recruiting
21-65 years
All
Phase N/A

Powered by AI

Overview

Most attempts to quit smoking end in relapse, or a return to regular smoking. One of the biggest threats to cessation is a lapse (i.e., any cigarette use during a quit attempt). Thus, characterizing why lapses occur is essential to understanding and preventing smoking relapse. Functional magnetic resonance imaging (fMRI) is a promising method for characterizing the psychological processes that lead to smoking lapses because it provides a way to measures patterns of brain activity thought to reflect relevant mental processes as they change over time. However, methodological issues have hindered the ability to capitalize on this potential and prevented an understanding of how brain activity and corresponding psychological processes unfold in the critical moments that immediately precede a smoking lapse. The proposed project will address this knowledge gap using a novel fMRI paradigm adapted from a well-validated behavioral lapse task. The goals of the project are to characterize changes in brain activity that lead up to a lapse and to investigate how these changes are related to concurrent affect and subsequent cigarette use.

Description

Most attempts to quit smoking end in relapse, or a return to regular smoking. One of the biggest threats to cessation is a lapse (i.e., any cigarette use during a quit attempt). Thus, characterizing why lapses occur is essential to understanding and preventing smoking relapse. Functional magnetic resonance imaging (fMRI) is a promising method for characterizing the psychological processes that lead to smoking lapses because it provides a way to measures patterns of brain activity thought to reflect relevant mental processes as they change over time. However, methodological issues have hindered the ability to capitalize on this potential and prevented an understanding of how brain activity and corresponding psychological processes unfold in the critical moments that immediately precede a smoking lapse. The proposed project will address this knowledge gap using a novel fMRI paradigm adapted from a well-validated behavioral lapse task. This novel fMRI paradigm includes an in-scanner delay period that models the ability to resist smoking during acute nicotine abstinence and a post-scan ad-lib period that captures key aspects of the smoking behavior that follows. Adults who smoke will abstain from cigarettes for 12 hours before completing the fMRI lapse paradigm. The goals of the project are to characterize changes in brain activity that lead up to a lapse and to investigate how these changes are related to concurrent affect and subsequent cigarette use. The study will focus specifically on linking lapse-related outcomes to time-dependent interactions between two large-scale brain networks: the executive control network, which includes parts of the lateral prefrontal and parietal cortices, and the default mode network, which includes parts of the medial prefrontal and posterior cingulate cortices. The central hypothesis guiding the proposed research is that lapse-related behavior and affect will be predicted by the extent to which the default mode network and the executive control network are functionally segregated (i.e., the strength of the connectivity within the default mode and executive control networks, relative to connectivity between the networks). The aims of the project are: 1) To examine the association between time-dependent changes in brain network dynamics and subsequent risk of smoking lapse; 2) To examine the association between time-dependent changes in brain network dynamics and self-reported affect leading up to a smoking lapse; and 3) To examine the association between brain network dynamics directly before a lapse and reinforcement from the smoking that follows. An additional exploratory aim of the study is to evaluate potential moderators of the association between brain network dynamics and lapse-related outcomes.

Eligibility

Inclusion Criteria:

  • Participants must be between the ages of 21 and 65.
  • Participants must be fluent English speakers.
  • Participants must pass an MRI safety screening.
  • Participants must report smoking at least six cigarettes per day continuously for at least the 12 preceding months.
  • Participants must have a baseline expired-air carbon monoxide exceeding 10 parts per million in order to verify smoking status.

Exclusion Criteria:

  • Individuals will be excluded if they report that they are not willing to refrain from using nicotine for 12 hours before the experimental lab visit.
  • Individuals will be excluded if they have any known risk from exposure to high-field strength magnetic fields (e.g., pacemakers), any irremovable metallic foreign objects in their body (e.g., braces), or a questionable history of metallic fragments that are likely to create artifact on the MRI scans.

Study details
    Smoking
    Tobacco Use

NCT05572671

Penn State University

27 January 2024

Step 1 Get in touch with the nearest study center
We have submitted the contact information you provided to the research team at {{SITE_NAME}}. A copy of the message has been sent to your email for your records.
Would you like to be notified about other trials? Sign up for Patient Notification Services.
Sign up

Send a message

Enter your contact details to connect with study team

Investigator Avatar

Primary Contact

  Other languages supported:

First name*
Last name*
Email*
Phone number*
Other language

FAQs

Learn more about clinical trials

What is a clinical trial?

A clinical trial is a study designed to test specific interventions or treatments' effectiveness and safety, paving the way for new, innovative healthcare solutions.

Why should I take part in a clinical trial?

Participating in a clinical trial provides early access to potentially effective treatments and directly contributes to the healthcare advancements that benefit us all.

How long does a clinical trial take place?

The duration of clinical trials varies. Some trials last weeks, some years, depending on the phase and intention of the trial.

Do I get compensated for taking part in clinical trials?

Compensation varies per trial. Some offer payment or reimbursement for time and travel, while others may not.

How safe are clinical trials?

Clinical trials follow strict ethical guidelines and protocols to safeguard participants' health. They are closely monitored and safety reviewed regularly.
Add a private note
  • abc Select a piece of text.
  • Add notes visible only to you.
  • Send it to people through a passcode protected link.