Image

The Influence of 3D Printed Prostheses on Neural Activation Patterns

The Influence of 3D Printed Prostheses on Neural Activation Patterns

Recruiting
3-18 years
All
Phase N/A

Powered by AI

Overview

The neural basis underlying motor performance in children using a prosthesis has been severely understudied resulting in minimal empirical evidence. The use of functional near-infrared spectroscopy (fNIRS) in conjunction with customized and visually appealing 3D printed prostheses would provide the unique opportunity to quantitatively assess the influence of upper-limb prostheses in the neural activation patterns of the primary motor cortex and motor performance of children. This information would increase the investigators limited knowledge of how prosthesis usage influences the primary motor cortex of growing children and use this information to develop rehabilitation programs aimed at reducing prosthesis rejection and abandonment.

Description

The investigators anticipate enrolling a total of 40 children between 3 and 18 years of age. Specifically, two groups of children will be recruited; children with unilateral congenital upper-limb reductions (n=20) and age and sex-matched control group of typically developing children (n=20). Considering the effect size from preliminary data and to account for a 10% drop-out rate, a total sample of 40 subjects will provide 80% power to detect a true standardized effect size.

Participants will be asked to attend a total of 3 sessions. Participants will attend an initial measurement session to take a 3D scan of the affected and non-affected upper limbs as well as several anthropometric measurements. During this session, three pictures of the upper limbs will be taken which will also be used to verify the fit the prostheses in a process previously validated by our research team. The research participants will then be asked to come for two testing visits. During the first testing visit (visit 1), participants will be fitted with the prosthesis and required adjustments to improve comfort and avoid pressure point will be performed. After fitting the prosthesis, participants will be given 15 minutes to explore the prosthesis and adjust the tensioner dial to regulate the opening of the fingers to perform the Box and Block Test. After the training and accommodation period, participants will be asked to perform 3 trials of flexion and extension of each wrist with and without the prosthesis and 3 different trials of the Box and Blocks Test for each hand while monitoring neural activity of the primary motor cortex using a fNIRS device. After a period of 20 minutes rest, participants will be asked to perform three trials of a bimanual coordination test using an instrumented tray. The bimanual task will require participants to start from a standard position and then reach forward and grasp (hand-to-tray), transport and place a tray on a ledge (tray transport), and then return the hands to the starting position (hand return). This task will be performed unimanually (3 trials for each hand) and bimanually (3 trials using both hands). Eight weeks after the baseline measurements, participants will be asked to visit our laboratory for a second time and perform the same assessments. Between the testing visits, participants will be encouraged to use the prosthesis for a minimum of 2 hours a day. In addition, an occupational therapy student will perform 3 home visits a week and will direct a training protocol that consists of completing three trials of a series of 6 block building activities for each hand separated by 30 seconds of rest (a total of 18 block building activities per hand). All participants including the control group will perform the same training protocol.

Eligibility

Inclusion Criteria:

  • Age 3-18 years.
  • Individuals missing any digits, hand, arm, shoulder.
  • Any dysfunction of the upper limbs.

Exclusion Criteria:

  • Participants who are outside of age range.
  • Participants with upper extremity injury within the past month.
  • Medical conditions which would be contraindications to wear a prosthetic or assistive device, Such as skin abrasions and musculoskeletal injuries in the upper limbs.

Study details
    Amniotic Band Syndrome
    Upper Extremity Deformities
    Congenital

NCT04110730

University of Nebraska

27 January 2024

Step 1 Get in touch with the nearest study center
We have submitted the contact information you provided to the research team at {{SITE_NAME}}. A copy of the message has been sent to your email for your records.
Would you like to be notified about other trials? Sign up for Patient Notification Services.
Sign up

Send a message

Enter your contact details to connect with study team

Investigator Avatar

Primary Contact

  Other languages supported:

First name*
Last name*
Email*
Phone number*
Other language

FAQs

Learn more about clinical trials

What is a clinical trial?

A clinical trial is a study designed to test specific interventions or treatments' effectiveness and safety, paving the way for new, innovative healthcare solutions.

Why should I take part in a clinical trial?

Participating in a clinical trial provides early access to potentially effective treatments and directly contributes to the healthcare advancements that benefit us all.

How long does a clinical trial take place?

The duration of clinical trials varies. Some trials last weeks, some years, depending on the phase and intention of the trial.

Do I get compensated for taking part in clinical trials?

Compensation varies per trial. Some offer payment or reimbursement for time and travel, while others may not.

How safe are clinical trials?

Clinical trials follow strict ethical guidelines and protocols to safeguard participants' health. They are closely monitored and safety reviewed regularly.
Add a private note
  • abc Select a piece of text.
  • Add notes visible only to you.
  • Send it to people through a passcode protected link.