Image

Cooperative Assessment of Late Effects for SCD Curative Therapies

Cooperative Assessment of Late Effects for SCD Curative Therapies

Recruiting
4-65 years
All
Phase N/A

Powered by AI

Overview

Sickle Cell Disease is one of the most common genetic diseases in the United States, occurring in approximately 1 in 400 births. Approximately 100,000 individuals are diagnosed with SCD in the United States. Mortality for children with SCD has decreased substantially over the past 4 decades, with >99% of those born in high resource settings, including the United States, France, and England, now surviving to 18 years of age. However, the life expectancy of adults with SCD is severely shortened. Dysfunction of the heart, lung, and kidney is directly associated with decreased life expectancy. With the variety of curative therapies that are now available for SCD, long-term health outcomes studies are time-sensitive. As of now, efforts to determine long-term health outcomes following curative therapies for SCD have been limited. Though curative therapies initially should provide a cure for symptoms of SCD, there is the risk of late health outcomes to consider. Defining health outcomes following curative therapy is essential to improve personalized decision-making when considering curative versus disease-modifying therapeutic options. The primary goal of this study is to determine whether curative therapies for individuals with SCD will result in improved or worsening heart, lung, and kidney damage when compared to individuals with SCD receiving standard therapy. The investigators will also explore whether certain genes are associated with a good or bad outcome after curative therapy for SCD.

Description

Our primary objective is initiating a personalized approach to curative therapies in children and adults with sickle cell disease (SCD) to maximize benefits and limit adverse outcomes. Limited clinical studies exist to determine the long-term health outcomes following curative therapies for SCD. With emerging curative therapies for SCD (allogeneic [allo] hematopoietic stem cell transplant [HSCT], gene therapy/editing), long-term health outcomes studies are critical to inform personalized choices. Unfortunately, adverse outcomes have started to emerge after SCD curative therapy. Thus, risks of a cure in SCD must be measured against the benefits of a cure, including stabilization of lung function (FEV1) and improved tricuspid regurgitant jet velocity [TRJV]. Ultimately, the shortened lifespan of individuals with SCD, attributable to declining heart (elevated TRJV), lung (decreased FEV1), and kidney (decreased eGFR) function, for which curative therapies were designed to ameliorate, must be measured against favorable and unfavorable late outcomes. In our multicenter retrospective-prospective cohort, the investigators will test the following hypotheses: 1a): myeloablative curative therapies for children with SCD will result in progressive pulmonary and renal dysfunction when compared to children with SCD receiving standard therapy; 1b): nonmyeloablative HSCT for adults with SCD will result in no significant change in FEV1% predicted, but will lead to accelerated decline in eGFR when compared to adults receiving standard therapy; 2) nonmyeloablative HSCT for adults with SCD will be associated with a clinically significant improvement in TRJV following HSCT; and 3) in adults with SCD, proliferative and genotoxic stress uniformly related to nonmyeloablative allo-HSCT and myeloablative gene editing will lead to post-HSCT therapy-related myeloid neoplasm of recipient origin. The investigators will address these hypotheses with the following aims: 1) evaluate the incidence of pulmonary and renal function in 1a: children with SCD receiving myeloablative curative therapies; and 1b: adults with SCD receiving nonmyeloablative allo-HSCT, compared to a pre-existing cohort of children and adults with SCD; 2) determine whether there is a clinically significant improvement in TRJV in adults with SCD, at least half having TRJV > 2.5 m/s, following nonmyeloablative allo-HSCT, 3) evaluate the prevalence, incidence and evolution of Clonal hematopoiesis of indeterminate potential (CHIP) concerning therapy-related myeloid neoplasm development following non-myeloablative HSCT or myeloablative gene editing in adults and children with SCD, and 4) evaluate accuracy and gaps involved in collecting clinical health record data directly from patients and family members in comparison to clinical health record data collected by research coordinators.

Eligibility

Inclusion Criteria

  • Confirmed laboratory diagnosis of SCD
  • Ability to give informed consent
  • Ability to provide pre- and post-curative therapy data
  • Treated with either one HSCT or with standard disease-modifying therapy

Exclusion Criteria

•History of non-compliance

Study details
    Sickle Cell Disease
    Pulmonary Disease
    Renal Disease
    Heart Disease

NCT05153967

Vanderbilt University Medical Center

27 January 2024

Step 1 Get in touch with the nearest study center
We have submitted the contact information you provided to the research team at {{SITE_NAME}}. A copy of the message has been sent to your email for your records.
Would you like to be notified about other trials? Sign up for Patient Notification Services.
Sign up

Send a message

Enter your contact details to connect with study team

Investigator Avatar

Primary Contact

  Other languages supported:

First name*
Last name*
Email*
Phone number*
Other language

FAQs

Learn more about clinical trials

What is a clinical trial?

A clinical trial is a study designed to test specific interventions or treatments' effectiveness and safety, paving the way for new, innovative healthcare solutions.

Why should I take part in a clinical trial?

Participating in a clinical trial provides early access to potentially effective treatments and directly contributes to the healthcare advancements that benefit us all.

How long does a clinical trial take place?

The duration of clinical trials varies. Some trials last weeks, some years, depending on the phase and intention of the trial.

Do I get compensated for taking part in clinical trials?

Compensation varies per trial. Some offer payment or reimbursement for time and travel, while others may not.

How safe are clinical trials?

Clinical trials follow strict ethical guidelines and protocols to safeguard participants' health. They are closely monitored and safety reviewed regularly.
Add a private note
  • abc Select a piece of text.
  • Add notes visible only to you.
  • Send it to people through a passcode protected link.