Overview
Invasive pressure-volume (PV) loop measurements have the potential to confirm or refute earlier computer simulations and animal studies regarding changes in cardiovascular physiology induced by (veno-arterial) ECMO. PV loop analysis could create a framework for the (ICU-) clinician for VA-ECMO weaning guidance, based on a patient's individual hemodynamic profile. PV loop measurements may, in future, serve as a guide for which patient would benefit most from (prolonged) VA-ECMO support or which patient would require additional LV unloading. Within the context of PLUTO-I, patients on VA-ECMO support who are eligible for weaning from VA-ECMO will undergo biventricular PV loop measurements on different intensities of extracorporeal support.
Description
Using VA-ECMO support, physiological stability can be maintained in patients with refractory hemodynamic failure as bridge to recovery, definitive therapy or decision making. Previous animal studies and computer simulations hypothesize increased LV afterload as well as RV distention during VA-ECMO. Decision making concerning VA-ECMO weaning is largely based on bedside hemodynamic (including echocardiographic) parameters. Profound details of the effects of VA-ECMO on elemental cardiac physiology, including myocardial metabolic efficiency and ventricular-arterial coupling, are limited. We hypothesize biventricular pressure-volume loop (PVL) measurement will enhance understanding of elemental cardiovascular physiology including ventricular interdependence during different levels of VA-ECMO support. PVL measurement will hypothetically provide opportunities in discovering novel predictors for successful weaning from VA-ECMO support. For the purpose of PLUTO-I, patients on VA-ECMO who are eligible to wean will undergo invasive PV-loop measurements on different intensities of extracorporeal flow.
Eligibility
Inclusion Criteria:
- On VA-ECMO support for any indication
Exclusion Criteria:
- Age < 18 years
- Re-initiation of VA-ECMO during the same ICU admission