Image

Thermodynamic Model of Hyperthermia in Humans Undergoing HIPEC

Thermodynamic Model of Hyperthermia in Humans Undergoing HIPEC

Recruiting
18 years and older
All
Phase N/A

Powered by AI

Overview

Hyperthermic Intraperitoneal Chemotherapy (HIPEC) is a well-established alternative for patients with peritoneal surface malignancies. Although HIPEC has a predetermined protocol to manage body temperature, the resultant bladder and core-body temperatures are highly variable and unstable in clinical practice. Such results highlight an incomplete understanding of the thermodynamic processes during HIPEC in humans.

Previous clinical and animal investigations have studied abdominal hyperthermia, but a full human model incorporating patient variables, heat delivery, and the impact of the circulatory system and anesthesia in HIPEC has not been established.

This project seeks to develop and validate a computational thermodynamic model using prospective real-world data from humans undergoing HIPEC surgery. It is hypothesized that by incorporating patient, anesthetic, and perfusion-related variables in a thermodynamic model, the temperatures inside and outside the abdomen during HIPEC can be predicted.

Description

Peritoneal surface malignancies are a group of cancers arising from rare primary or common secondary tumors. Regardless of the etiology, the prognosis is poor and only a few therapies have shown promising results. Hyperthermic Intraperitoneal Chemotherapy (HIPEC) is a well-established alternative for patients with these malignancies. Still, as many as 46% of patients recur early after treatment.

Although HIPEC has a predetermined protocol to manage body temperature, the resultant bladder and core-body temperatures are highly variable. Age, gender, body mass index, and type and duration of chemotherapy are key factors influencing the incidence and severity of bladder hyperthermia. While clinical and animal investigations have studied abdominal hyperthermia, a full human model incorporating patient variables, heat delivery, and the impact of the circulatory system and anesthesia in HIPEC has not been established.

To bridge this gap in knowledge, this project seeks to develop and validate a computational thermodynamic model using prospective real-world data from humans undergoing HIPEC surgery. It is hypothesized that by incorporating patient, anesthetic, and perfusion-related variables in a thermodynamic model, the temperatures inside and outside the abdomen during HIPEC can be predicted. By predicting temperature changes during HIPEC, clinicians can improve the safety and efficacy of therapeutic hyperthermia.

The hypothesis will be evaluated through two specific aims:

Specific aim 1: To develop a computational, thermodynamic model of intraabdominal hyperthermia for humans undergoing HIPEC. The rationale is that existing thermodynamic models are designed for non-anesthetized or hypothermic humans, implying the need of a new model with the conditions of a HIPEC treatment.

Specific aim 2: To validate our novel computational thermodynamic model using prospective real-world data from humans undergoing HIPEC surgery. Our rationale is that by using real-world data, the initial (SA1) computational model can be optimized and ultimately used to formulate individualized hyperthermia treatments.

Eligibility

Inclusion Criteria:

  • Adults (at least 18 years or older)
  • Scheduled to undergo HIPEC surgery for abdominal cancer at HFH-Main

Exclusion Criteria:

  • Pregnant females
  • Minors
  • Disease not amenable for treatment with HIPEC after surgical examination.

Study details
    HIPEC

NCT05426928

Henry Ford Health System

26 January 2024

Step 1 Get in touch with the nearest study center
We have submitted the contact information you provided to the research team at {{SITE_NAME}}. A copy of the message has been sent to your email for your records.
Would you like to be notified about other trials? Sign up for Patient Notification Services.
Sign up

Send a message

Enter your contact details to connect with study team

Investigator Avatar

Primary Contact

  Other languages supported:

First name*
Last name*
Email*
Phone number*
Other language

FAQs

Learn more about clinical trials

What is a clinical trial?

A clinical trial is a study designed to test specific interventions or treatments' effectiveness and safety, paving the way for new, innovative healthcare solutions.

Why should I take part in a clinical trial?

Participating in a clinical trial provides early access to potentially effective treatments and directly contributes to the healthcare advancements that benefit us all.

How long does a clinical trial take place?

The duration of clinical trials varies. Some trials last weeks, some years, depending on the phase and intention of the trial.

Do I get compensated for taking part in clinical trials?

Compensation varies per trial. Some offer payment or reimbursement for time and travel, while others may not.

How safe are clinical trials?

Clinical trials follow strict ethical guidelines and protocols to safeguard participants' health. They are closely monitored and safety reviewed regularly.
Add a private note
  • abc Select a piece of text.
  • Add notes visible only to you.
  • Send it to people through a passcode protected link.