Image

Mirror Therapy and Augmented Reality in Stroke Rehabilitation

Mirror Therapy and Augmented Reality in Stroke Rehabilitation

Recruiting
30-80 years
All
Phase N/A

Powered by AI

Overview

This research is in line with the National Health Research Institutes (NHRI) Innovative Research Grant priority to address innovative treatment strategies for neurological disorders that are in desperate need of scientific scrutiny. Stroke is one of the major medical conditions that leads to long-term disability and causes a heavy health care and financial burden. To meet multidimensional needs of patients with stroke, hybrid interventions that combine different approaches are needed due to the complexity of stroke. Our previous research funded by the NHRI has been published and translated to stroke rehabilitation, particularly in the priming and synergic effects of robotic-assisted training and/or mirror therapy (MT). To extend from our previous research, the investigators will combine MT with augmented reality (AR), an emerging adjunct therapy in stroke rehabilitation. An AR-based intervention provides an intensive, repetitive, and context-rich training program, leading to an interesting environment with real-time feedback to increase motivation and participation.

Description

This proposed research is in line with the prioritized need to address innovative treatment strategies for neurological disorders that are in desperate need of scientific scrutiny. Stroke is one of the major medical conditions that leads to long-term disability and causes a heavy health care and financial burden. To meet multidimensional needs of patients with stroke, hybrid interventions that combine different approaches are needed due to the complexity of stroke. Our previous research funded by the NHRI has been published and translated to stroke rehabilitation, particularly in the priming and synergic effects of robotic-assisted training and/or mirror therapy (MT). To extend from our previous research, the investigators will combine MT with augmented reality (AR), an emerging adjunct therapy in stroke rehabilitation. An AR-based intervention provides an intensive, repetitive, and context-rich training program, leading to an interesting environment with real-time feedback to increase motivation and participation.

Current stroke rehabilitation programs, such as MT and AR and their combination, are novel intervention approaches that have promise for feedback-enhanced stroke rehabilitation. MT may contribute to bilateral brain coupling by means of mirror visual feedback. It can potentially be an effective priming technique for creating an enriched neuroplastic environment to facilitate motor and functional recovery. AR is powered by its potential to provide an intensive, repetitive, and context-rich training program and promote motor, mobility, and cognition function recovery. MT and AR can be complementary for formulating a hybrid regimen. MT has been implemented conventionally by being based on a bilateral approach. Our innovative protocol will include both unilateral and bilateral MT using personally relevant task objects for improving task performance. The goals of this proposed research project will be to (1) compare treatment efficacy between the hybrid approaches of MT preceding AR (MT+AR), AR-based intervention (AR), and dose-matched conventional therapy (CT) on sensory and motor function, mobility, daily function, life quality, and self-efficacy in stroke patients, and (2) identify the potential predictors of treatment success using chi-squared automatic interaction detection (CHAID). This project is a single-blinded three-armed randomized controlled trial. The investigators plan to recruit 128 stroke survivors who will be randomly allocated to one of the experimental (MT+AR), comparison (AR), or control (CT) groups. The experimental group will receive 40 minutes of MT, followed by 40 minutes of AR training and 10 minutes of functional practice. The comparison group will receive 80 minutes of AR training combined with 10 minutes of functional practice. The control group will have 90 minutes of conventional occupational therapy, including 10 minutes of functional practice.

All participants will receive interventions for 90 minutes/day, 3 days/week for 6 weeks. There will be three assessment time points: baseline, immediately after the intervention, and the 3-month follow-up. The primary outcome measures are the upper-extremity subscale of the Fugl-Meyer Assessment and Berg Balance Scale. Under the International Classification of Functioning, Disability and Health (ICF) framework, the investigators will also include sensory impairment, actual arm use, daily activity function, self-efficacy, and quality of life as the secondary outcomes. Analysis of covariance controlling the baseline scores will be used to analyze the immediate and retention effects between treatment groups. After determining the minimal clinically important difference (MCID) in the primary outcomes using anchor- and distribution-based methods, the investigators will further use CHAID to identify the significant predictors and the corresponding cutoff points to differentiate those who have a greater likelihood to respond to treatment. The investigators expect to provide robust evidence for the hybrid regimen of MT-primed AR to boost poststroke patients' recovery in sensory/motor impairment, dysfunction in daily activities, low self-efficacy, and poor health-related quality of life. Specifically, the priming effect of mirror visual feedback is anticipated to be supported by showing a larger effect size in the MT+AR group compared with the AR and CT group. Based on the clinical trial data of our proposed project, the investigators will determine the MCIDs specific to the outcomes of MT/AR and further conduct the CHAID analysis to identify critical predicting factor of treatment success. The findings will update evidence-based stroke care advocated by the Ministry of Health and Welfare and be used to translate the evidence into clinical practice and decision making in precision stroke rehabilitation.

Eligibility

Inclusion Criteria:

  1. a first-ever unilateral stroke ≥3 months and ≤3 years
  2. age between 30 and 80 years (Kwakkel et al., 1999)
  3. baseline Fugl-Meyer Assessment Upper Extremity (FMA-UE) score >10 (Fugl-Meyer et al., 1975)
  4. no severe spasticity in any joints of the affected arm (modified Ashworth scale <3) (Charalambous, 2014)
  5. ability to follow the instructions of the evaluator and therapists
  6. the ability to maintain a step-standing position for at least 30 seconds (Lloréns et al., 2015)
  7. ability to walk a minimum of 10 meters, with or without a device (Park et al., 2017)
  8. no severe vision impairments or other major neurologic diseases
  9. no participation in other studies during the study period
  10. willingness to provide informed written consent.

Exclusion Criteria:

  1. acute inflammation
  2. serious medical problems or poor physical conditions that might be detrimental to study participation.

Study details
    Stroke Rehabilitation

NCT05993091

National Taiwan University Hospital

15 April 2024

Step 1 Get in touch with the nearest study center
We have submitted the contact information you provided to the research team at {{SITE_NAME}}. A copy of the message has been sent to your email for your records.
Would you like to be notified about other trials? Sign up for Patient Notification Services.
Sign up

Send a message

Enter your contact details to connect with study team

Investigator Avatar

Primary Contact

  Other languages supported:

First name*
Last name*
Email*
Phone number*
Other language

FAQs

Learn more about clinical trials

What is a clinical trial?

A clinical trial is a study designed to test specific interventions or treatments' effectiveness and safety, paving the way for new, innovative healthcare solutions.

Why should I take part in a clinical trial?

Participating in a clinical trial provides early access to potentially effective treatments and directly contributes to the healthcare advancements that benefit us all.

How long does a clinical trial take place?

The duration of clinical trials varies. Some trials last weeks, some years, depending on the phase and intention of the trial.

Do I get compensated for taking part in clinical trials?

Compensation varies per trial. Some offer payment or reimbursement for time and travel, while others may not.

How safe are clinical trials?

Clinical trials follow strict ethical guidelines and protocols to safeguard participants' health. They are closely monitored and safety reviewed regularly.
Add a private note
  • abc Select a piece of text.
  • Add notes visible only to you.
  • Send it to people through a passcode protected link.