Image

Cardiopulmonary Bypass Induced Red Blood Cell Lysis

Cardiopulmonary Bypass Induced Red Blood Cell Lysis

Recruiting
18-75 years
All
Phase N/A

Powered by AI

Overview

Studying the dynamics of red blood cell lysis, pfH, protective proteins and organ injury, limits will be set for safe levels of pfH following the use of CPB. These results will be compared to existing laboratory-based methods for determining red blood cell damage to predict CPB assist device safety. Further, results from the studies described in this proposal will help develop therapeutic strategies to benefit patients by early detection of pfH and clearance protein levels that occur during CPB.

Description

Cost estimates for brain, lung, cardiac, and kidney complications following complex cardiac surgeries that require a medical assist device to by-pass the heart and lungs (cardiopulmonary bypass, CPB) is estimated to cost $80 million per individual states in the US over a ten-year period. These extra costs represent a significant burden on the healthcare system but could be reduced by understanding how medical assist devices lead to organ injury associated with complex cardiac surgeries. The primary goals of this research are to (1) understand how hemoglobin released into plasma (pfH) from damaged red blood cells that passage through CPB contributes to organ injury. (2) Determine the amount of pfH necessary to cause organ injury. (3) Determine the concentration changes in protective proteins (called haptoglobin, hemopexin and transferrin) that remove pfH and its degradation products from the circulation. (4) Design a computer-based model that will determine the levels of pfH and protective proteins to predict the potential for organ injury. By studying the dynamics of red blood cell lysis, pfH, protective proteins and organ injury limits will be set for safe levels of pfH following the use of CPB. These results will be compared to existing laboratory-based methods for determining red blood cell damage to predict CPB assist device safety. Further, results from the studies described in this proposal will help develop therapeutic strategies to benefit patients by early detection of pfH and clearance protein levels that occur during CPB. The primary goals of this research are to (1) understand how hemoglobin released into plasma (pfH) from damaged red blood cells that passage through CPB contributes to organ injury. (2) Determine the amount of pfH necessary to cause organ injury. (3) Determine the concentration changes in protective proteins (called haptoglobin, hemopexin and transferrin) that remove pfH and its degradation products from the circulation. (4) Design a computer-based model that will determine the levels of pfH and protective proteins to predict the potential for organ injury. By studying the dynamics of red blood cell lysis, pfH, protective proteins and organ injury limits will be set for safe levels of pfH following the use of CPB. These results will be compared to existing laboratory-based methods for determining red blood cell damage to predict CPB assist device safety. Further, results from the studies described in this proposal will help develop therapeutic strategies to benefit patients by early detection of pfH and clearance protein levels that occur during CPB.

Eligibility

Inclusion Criteria:

  • Admitted to UMMC for cardiac procedure
  • Age: >/=18 y.o TO 75 y.o.
  • Undergoing CPB >1hr for the following surgeries (a) complex cardiac surgery (b) heart valve replacement surgery OR (c) CABG surgery.

Exclusion Criteria:

  • Pregnant
  • Non English speaking
  • Unable to consent or have Legally Authorized Representative (LAR) assent to study

Study details
    Cardiopulmonary Bypass
    Cardiac Surgery
    Kidney Injury
    Acute

NCT05189262

University of Maryland, Baltimore

26 January 2024

Step 1 Get in touch with the nearest study center
We have submitted the contact information you provided to the research team at {{SITE_NAME}}. A copy of the message has been sent to your email for your records.
Would you like to be notified about other trials? Sign up for Patient Notification Services.
Sign up

Send a message

Enter your contact details to connect with study team

Investigator Avatar

Primary Contact

  Other languages supported:

First name*
Last name*
Email*
Phone number*
Other language

FAQs

Learn more about clinical trials

What is a clinical trial?

A clinical trial is a study designed to test specific interventions or treatments' effectiveness and safety, paving the way for new, innovative healthcare solutions.

Why should I take part in a clinical trial?

Participating in a clinical trial provides early access to potentially effective treatments and directly contributes to the healthcare advancements that benefit us all.

How long does a clinical trial take place?

The duration of clinical trials varies. Some trials last weeks, some years, depending on the phase and intention of the trial.

Do I get compensated for taking part in clinical trials?

Compensation varies per trial. Some offer payment or reimbursement for time and travel, while others may not.

How safe are clinical trials?

Clinical trials follow strict ethical guidelines and protocols to safeguard participants' health. They are closely monitored and safety reviewed regularly.
Add a private note
  • abc Select a piece of text.
  • Add notes visible only to you.
  • Send it to people through a passcode protected link.