Image

Embolization of the Splenic Artery After Trauma

Embolization of the Splenic Artery After Trauma

Recruiting
15 years and older
All
Phase N/A

Powered by AI

Overview

Our aim is to conduct a multi-center, Bayesian, randomized clinical trial to evaluate the primary technical success of coils and vascular plugs for proximal splenic artery embolization in the setting of high-grade splenic trauma. The investigator has previously demonstrated the feasibility of such a study in a single center pilot trial.

Description

Splenic preservation rates are improved for participants with high-grade splenic injuries (defined as Grade III-V injuries by the American Association for the Surgery of Trauma (AAST) guidelines) when non-operative management is supplemented by image-guided, trans-catheter splenic artery embolization (SAE). SAE is currently the standard of care for hemodynamically stable participants with high-grade splenic injuries. In proximal SAE (pSAE), the mid-splenic artery is embolized between the origins of the dorsal pancreatic artery and pancreatica magna artery with either endovascular plugs (VPs) or endovascular coils (EC). This reduces the intra-splenic arterial pressure which allows the parenchyma time to heal. Splenic perfusion is maintained via a collateral pathway consisting of flow from the splenic artery proximal to the site of embolization through the smaller dorsal pancreatic artery to the transverse pancreatic artery to the pancreatica magna artery which then delivers a slower, smaller amount of blood to the splenic artery distal to the site of embolization. Additionally, collateral supply from the short gastric and gastroepiploic arteries helps to protect the spleen from infarction and/or abscess formation.

pSAE is most often accomplished using either VPs or ECs as the embolic agent, both of which are FDA-approved and clinically-available. ECs have a long history of efficacy and safety for embolization and are thus familiar embolic agents to most endovascular specialists. Further, coils large enough to embolize the mid-splenic artery can be deployed through a standard micro-catheter, which means they can be used in even the most tortuous splenic arteries. However, multiple coils may need to be deployed in the same patient to achieve hemostasis in the mid-splenic artery that may increase their overall cost, iodinated contrast use, procedural time, and the radiation exposure to the participant and medical staff. Additionally, given the high-flow nature of the splenic artery, even an appropriately sized coil may migrate distally. A typical pSAE using coils will involve the deployment of one helical coil followed by multiple packing coils until hemostasis is achieved. VPs attempt to overcome the limitations of coils. For example, the deployment of a single VP can typically provide hemostasis in the mid-splenic artery which theoretically reduces procedural time, contrast load, and radiation exposure. Despite this, VPs are usually more expensive than coils on a per unit basis and are usually less familiar devices to endovascular specialists. Another drawback of VPs is that they cannot be deployed through a standard micro-catheter but rather require the advancement of a larger, stiffer 0.035 inch system into the mid-splenic artery. This may limit their use in very tortuous splenic arteries. Currently, the selection of embolic agent for pSAE is primarily based on operator experience and preference. The embolic efficacy, technical success, and cost of using coils compared to VPs has been evaluated in other diseases; yet, to the best of our knowledge, these embolic agents have never been compared for their use in pSAE, much less in a randomized, prospective fashion.

Eligibility

Inclusion Criteria:

  1. ≥15 years of age
  2. Trauma resulting in grade III or higher splenic injury on contrast-enhanced CT
  3. Splenic injury to be treated by non-operative management as decided by attending trauma surgeon and interventional radiologist
  4. The attending interventional radiologist determines that the patient will undergo proximal splenic artery embolization with the specific method to be decided by randomization.

Exclusion Criteria:

  1. Inability to obtain informed consent
  2. ≤ 50kg
  3. Uncorrectable coagulopathy
  4. Patient is immunocompromised
  5. Pregnant
  6. Breast-feeding
  7. Non-English speakers
  8. Prisoners

Study details
    High-grade Splenic Injuries

NCT05128955

Andrew J. Gunn

9 May 2025

Step 1 Get in touch with the nearest study center
We have submitted the contact information you provided to the research team at {{SITE_NAME}}. A copy of the message has been sent to your email for your records.
Would you like to be notified about other trials? Sign up for Patient Notification Services.
Sign up

Send a message

Enter your contact details to connect with study team

Investigator Avatar

Primary Contact

  Other languages supported:

First name*
Last name*
Email*
Phone number*
Other language

FAQs

Learn more about clinical trials

What is a clinical trial?

A clinical trial is a study designed to test specific interventions or treatments' effectiveness and safety, paving the way for new, innovative healthcare solutions.

Why should I take part in a clinical trial?

Participating in a clinical trial provides early access to potentially effective treatments and directly contributes to the healthcare advancements that benefit us all.

How long does a clinical trial take place?

The duration of clinical trials varies. Some trials last weeks, some years, depending on the phase and intention of the trial.

Do I get compensated for taking part in clinical trials?

Compensation varies per trial. Some offer payment or reimbursement for time and travel, while others may not.

How safe are clinical trials?

Clinical trials follow strict ethical guidelines and protocols to safeguard participants' health. They are closely monitored and safety reviewed regularly.
Add a private note
  • abc Select a piece of text.
  • Add notes visible only to you.
  • Send it to people through a passcode protected link.