Image

Perinatal Brain Injury: Potential of Innovative NIRS to Optimize Hypothermia

Perinatal Brain Injury: Potential of Innovative NIRS to Optimize Hypothermia

Recruiting
2 years and younger
All
Phase N/A

Powered by AI

Overview

The purpose of this study is to improve the ability of the investigators to monitor brain health in newborn babies at risk of brain injuries. The researchers will be using an investigational system of devices to non-invasively (that, is, without penetrating the skin), measure the amount of oxygen going to and being used by the brain. They will be taking some bedside research measurements during the babies' stay at the hospital. With these measurements, the intention is to study the role of oxygen in brain injury and test the efficacy of the research device and its potential as a permanent bedside diagnostic device.

Description

Neonatal encephalopathy (NE) due to hypoxia-ischemia is a major public health concern as it occurs in 6/1000 live term births and has devastating consequences. Many affected neonates suffer lifelong motor disabilities and epilepsy, but increasingly the high prevalence of cognitive and behavioral disabilities is becoming appreciated. In hypoxia-ischemia there is a decrease in blood and oxygen delivery, followed by reperfusion with transient energy recovery. What follows is a "window of opportunity" where excitotoxicity and associated increased cerebral metabolism eventually lead to secondary energy failure and irreversible cell death. In this window, therapeutic hypothermia (TH) is currently the only treatment available with proven efficacy. TH acts primarily by decreasing cerebral metabolism, thus preserving energy stores.

Although the current gold standard for brain injury detection is magnetic resonance imaging (MRI), MRI is impractical as a screening tool and cannot provide bedside monitoring to optimize individual responses to therapies. Commercially available continuous wave (CW) near infrared spectroscopy (NIRS) systems provide bedside measures of cerebral oxygen saturation (SO2) but SO2 alone cannot assess oxygen metabolism, as oxygen delivery is not taken into account. What is needed is a bedside tool that can monitor cerebral metabolism to detect elevations in metabolism that suggest evolving hypoxic-ischemic injury, and decreases in metabolism that suggest response to therapy. Cerebral oxygen consumption (CMRO2) is a direct measure of cerebral metabolism and therefore the investigators propose to measure an index of CMRO2 at the bedside using the innovative combination of Frequency Domain Near-Infrared Spectroscopy (FDNIRS) and Diffuse Correlation Spectroscopy (DCS). The initial studies from the investigators show that CMRO2 is elevated in neonates with MRI evidence of perinatal brain injury, and confirm that neonates on TH have significantly lower CMRO2 than normal controls. Following these exciting results, they now propose a feasibility study to determine if FDNIRS-DCS can screen for involvement, assess response to treatment, and predict outcomes in one of the largest neonatal populations requiring early screening and immediate intervention: neonatal encephalopathy. To assess early outcomes, the research team proposes an innovative combination of advanced neurobehavioral testing, regional FDNIRS-DCS measures and quantitative MRI analysis using MRIs obtained without sedation. If the hypotheses prove true, it will help in determining if bedside indices of CMRO2 provided by FDNIRS-DCS can optimize TH for individual neonates, thereby improving neurodevelopmental outcomes. Success at this stage will also allow exploration of the potential for FDNIRS-DCS to determine the additional benefits of emerging new treatments for NE and to screen for other treatable neonatal disorders.

Eligibility

Inclusion criteria:

Neonates must be > 33 weeks gestational age (GA) and meet inclusion criteria for one of the two groups:

  1. Therapeutic Hypothermia (TH) Group:
    1. Undergo TH as part of their clinical management
    2. Parents consent to multiple measures in the first week of life.
  2. No Therapeutic Hypothermia (no-TH) Group:
    1. Signs will be defined broadly as any one of the following which can be considered evidence of NE caused by HIE or other etiologies: i) Seizures alone or ii) any of the following: abnormal consciousness, difficulty maintaining respiration, difficulty feeding (presumed central origin), abnormal tone or reflexes.
    2. Parents consent to multiple measures in the first week of life.

Exclusion criteria:

Exclusion criteria includes neonates born at GA ≤ 33 weeks or < 2.0 kg, with implanted devices or other devices that preclude the use of MRI will be excluded from the follow up MRI session.

Study details
    Hypoxic Ischemic Brain Injury
    Neonatal Encephalopathy

NCT02793999

Boston Children's Hospital

16 January 2025

Step 1 Get in touch with the nearest study center
We have submitted the contact information you provided to the research team at {{SITE_NAME}}. A copy of the message has been sent to your email for your records.
Would you like to be notified about other trials? Sign up for Patient Notification Services.
Sign up

Send a message

Enter your contact details to connect with study team

Investigator Avatar

Primary Contact

  Other languages supported:

First name*
Last name*
Email*
Phone number*
Other language

FAQs

Learn more about clinical trials

What is a clinical trial?

A clinical trial is a study designed to test specific interventions or treatments' effectiveness and safety, paving the way for new, innovative healthcare solutions.

Why should I take part in a clinical trial?

Participating in a clinical trial provides early access to potentially effective treatments and directly contributes to the healthcare advancements that benefit us all.

How long does a clinical trial take place?

The duration of clinical trials varies. Some trials last weeks, some years, depending on the phase and intention of the trial.

Do I get compensated for taking part in clinical trials?

Compensation varies per trial. Some offer payment or reimbursement for time and travel, while others may not.

How safe are clinical trials?

Clinical trials follow strict ethical guidelines and protocols to safeguard participants' health. They are closely monitored and safety reviewed regularly.
Add a private note
  • abc Select a piece of text.
  • Add notes visible only to you.
  • Send it to people through a passcode protected link.