Image

Vacuolar ATPase and Drug Resistance of High Grade Gliomas

Vacuolar ATPase and Drug Resistance of High Grade Gliomas

Recruiting
18-90 years
All
Phase N/A

Powered by AI

Overview

GBMs are still considered tumors with few available treatment options that are able only to achieve a temporary local control of the disease. In case of a GBM, tumor recurrence is generally expected within 12 months and it is due to the presence of marginal tumoral cells with pro-oncogenic molecular phenotypes that are resistant to actual chemotherapies and to radiation therapy. Nowadays, surgery still represent the first treatment option in case of suspected GBM and it aims to remove the contrast enhancing lesion seen at the pre-operative brain MRI. In particular, the peripheral layer of the tumor is made of low replicating cellsglioblastoma-associated stromal cell (GASC) that can show different carcinogenic properties and that are probably responsible for tumor recurrence. Metabolism of GBMs is mainly anaerobialglicolisis that leads to the transformation of glucose in ATP and lactates. The production of high lactate levels determines a decrease of intracellular pH that is counterbalanced by V-ATPase activity through H+ ions extrusion from the intracellular to the extracellular environment. Increased V-ATPase activity affects different pro-tumoral activities and plays a crucial role in chemoresistance. In fact, a low extracellular pH can reduce the efficacy of antineoplastic agents since a low pH might affect the structural integrity of drugs and their ability to pass through the plasmatic membrane. Finally, V-ATPase can act as an active pump able to excrete antineoplastic agents. GBMs with high V-ATPAse expression are able to transmit malignant features and to activate proliferation of GASC in vitro through a network of microvescicles (MV) like exosomes and large oncosomes (LO) that transport cell to cell copy DNA (cDNA) and micro-RNAs (miRNA).In this view, our work is intended to study: 1) the effects of proton pump inhibitors (PPI) on CSC and GASCs cultures as in vitro add-on treatments; 2) the MVs load (in terms of miRNAs and cDNAs) during the neuro-oncological follow-up in order to understand how it changes after surgery and adjuvant treatments; 3) the possible roles of V-ATPase as a clinical marker to be used to check tumor response to adjuvant treatments.

Description

GBMs are still considered tumors with few available treatment options that are able only to achieve a temporary local control of the disease. In case of a GBM, tumor recurrence is generally expected within 12 months and it is due to the presence of marginal tumoral cells with pro-oncogenic molecular phenotypes that are resistant to actual chemotherapies and to radiation therapy. In particular, in case of GBM it is possible to distinguish three neoplastic layers within the tumor that show different molecular patterns: the central core; the intermediate layer and the peripheral layer. Nowadays, surgery still represent the first treatment option in case of suspected GBM and it aims to remove the contrast enhancing lesion seen at the pre-operative brain MRI. In particular, the peripheral layer is made of low replicating cells and it can be considered normal when tissue sampling is made far from the tumor cavity. In fact, Clavreul et al. in 2015 demonstrated that peripheral GBM layer contains glioblastoma-associated stromal cell (GASC) that can show different carcinogenic properties and that are probably responsible for tumor recurrence. These findings can be considered in line with previous studies that showed some invasive tumor cells, various types of reactive cells, and angiogenesis with different immunophenotypes in peritumoral brain edema.

Nevertheless, some research teams are trying to understand if surgical removal of peritumoral FLAIR hyperintensity is able to reduce the tumor recurrence rate prolonging the OS.

Metabolism of GBMs is mainly anaerobial and it is sustained by glycolysis. Anaerobial glycolysis is a simple metabolic reaction that leads to the transformation of glucose in ATP and lactates. Glucose is delivered to the tumor through neoangiogenetic processes. Production of a significant amount of lactates determines a decrease of intracellular pH that is counterbalanced by V-ATPase activity through the extrusion of H+ ions from the intracellular to the extracellular environment. In vitro inhibition of V-ATPAse has proved to increase CSC apoptosis due to decrease of intracellular pH.

Moreover, increased V-ATPase activity determines an extrusion of H+ ions in the extracellular environment that can positively affect different pro-tumoral activities. In fact, a decrease of extracellular pH leads to activation of proteases able to destroy the extracellular matrix. Such activity enhances tumor spreading. Moreover, a low extracellular pH can reduce the efficacy of antineoplastic agents since a low pH might affect the structural integrity of drugs and their ability to pass through the plasmatic membrane. Finally, V-ATPase can act as an active pump able to excrete antineoplastic agents.

For this reason, PPIs are considered new anti-cancer drugs able to increase tumoral cell death, reduce tumor invasion and increase chemotherapy efficacy.

Moreover, GBMs with high V-ATPAse expression has proved to be able to transmit highly malignant features through a network of MVs and to activate proliferation of GASC in vitro through the transmission of G1 subunit of V-ATPAse.

In this view, our work is intended to study: 1) the effects of PPIs on CSC and GASCs cultures as in vitro add-on treatments; 2) the MVs load in terms of miRNAs and DNA (ssDNA, exoDNA) during the neuro-oncological follow-up in order to understand how it changes after surgery and adjuvant treatments; 3) the possible roles of V-ATPase as a clinical marker to be used to check tumor response to adjuvant treatments.

Eligibility

Inclusion Criteria:

  • Patients => 18 years old;
  • Patients with an intra-axial brain tumor suspect for glioma;
  • Patients able to sign a consent form for research purpose;
  • Patients with planned craniotomy for brain tumor resection.

Exclusion Criteria

  • Patients < 18 years old;
  • Patients with known brain tumors different than gliomas;
  • Patients unable to sign a consent form for research purpose;
  • Patients undergoing brain tumor biopsy;
  • Patients with poor intra-operative or small surgical sample for histopathological diagnosis;
  • Histology diagnostic for tumors different than gliomas.

Study details
    Glioblastoma Multiforme

NCT05328089

University of Milano Bicocca

26 January 2024

Step 1 Get in touch with the nearest study center
We have submitted the contact information you provided to the research team at {{SITE_NAME}}. A copy of the message has been sent to your email for your records.
Would you like to be notified about other trials? Sign up for Patient Notification Services.
Sign up

Send a message

Enter your contact details to connect with study team

Investigator Avatar

Primary Contact

  Other languages supported:

First name*
Last name*
Email*
Phone number*
Other language

FAQs

Learn more about clinical trials

What is a clinical trial?

A clinical trial is a study designed to test specific interventions or treatments' effectiveness and safety, paving the way for new, innovative healthcare solutions.

Why should I take part in a clinical trial?

Participating in a clinical trial provides early access to potentially effective treatments and directly contributes to the healthcare advancements that benefit us all.

How long does a clinical trial take place?

The duration of clinical trials varies. Some trials last weeks, some years, depending on the phase and intention of the trial.

Do I get compensated for taking part in clinical trials?

Compensation varies per trial. Some offer payment or reimbursement for time and travel, while others may not.

How safe are clinical trials?

Clinical trials follow strict ethical guidelines and protocols to safeguard participants' health. They are closely monitored and safety reviewed regularly.
Add a private note
  • abc Select a piece of text.
  • Add notes visible only to you.
  • Send it to people through a passcode protected link.