Image

Mild Intermittent Hypoxia: A Prophylactic for Autonomic Dysfunction in Individuals With Spinal Cord Injuries

Mild Intermittent Hypoxia: A Prophylactic for Autonomic Dysfunction in Individuals With Spinal Cord Injuries

Recruiting
18-60 years
All
Phase N/A

Powered by AI

Overview

The prevalence of autonomic dysfunction and sleep disordered breathing (SDB) is increased in individuals with spinal cord injury (SCI). The loss of autonomic control results in autonomic dysreflexia (AD) and orthostatic hypotension (OH) which explains the increase in cardiovascular related mortality in these Veterans. There is no effective prophylaxis for autonomic dysfunction. The lack of prophylactic treatment for autonomic dysfunction, and no best clinical practices for SDB in SCI, are significant health concerns for Veterans with SCI. Therefore, the investigators will investigate the effectiveness of mild intermittent hypoxia (MIH) as a prophylactic for autonomic dysfunction in patients with SCI. The investigators propose that MIH targets several mechanisms associated with autonomic control and the co-morbidities associated with SDB. Specifically, exposure to MIH will promote restoration of homeostatic BP control, which would be beneficial to participation in daily activities and independence in those with SCI.

Description

Individuals with a spinal cord injury (SCI) above the 6th thoracic vertebrae experience severe autonomic dysfunction. These individuals lose the ability to control blood pressure (BP) during a noxious or non-noxious stimulus below the injury (Autonomic Dysreflexia [AD]) and during positional changes (Orthostatic Hypotension [OH]). The loss of descending autonomic control and subsequent loss of BP control are highly prevalent in individuals with SCI. More importantly, many individuals are unaware of the loss of BP control as most individuals remain asymptomatic. These potentially life-threatening oscillations in BP are known to induce further damage; creating a vicious cycle of continued autonomic and cardiovascular dysfunction which explains the increased cardiovascular related mortality. Unfortunately, there is no effect prophylaxis for autonomic dysfunction in these individuals. Furthermore, the prevalence of sleep disordered breathing (SDB) is high in individuals with SCI (tetraplegia can exceed 90%), and there is no current best clinical practice guidelines for treating SDB in individuals with SCI. The primary treatment is with continuous positive airway pressure (CPAP). Unfortunately, treatment adherence remains poor. Moreover, SDB is known to negatively impact autonomic, cardiovascular, and microvascular function in individuals without SCI. In individuals without an SCI, adherence to CPAP has shown to improve microvascular function. Although no direct evidence is available, individuals with SCI have shown to have a reduction in the frequency of AD when adherent to CPAP suggesting the microvasculature may be a pro-active therapeutic target for AD and OH. Both autonomic dysfunction and SDB are negatively impacted by the lack of motor function following SCI resulting in deconditioning, atrophy of the muscles and vessels, insulin resistance, and reduced metabolic rate. It has been suggested higher CPAP pressure during in-home treatment coupled with increased upper airway resistances are primary physiological barriers to CPAP treatment. Therefore, treatment options that directly improve the blood pressure response to sympathetic activation, upper airway function as well as improve microvascular function are imperative for those with a SCI. The overall goal of the present proposal is to investigate if daily exposure to mild intermittent hypoxia (MIH) can ameliorate autonomic dysfunction in persons with SCI as well as improve mitochondrial and microvascular function. The investigators will recruit individuals with SCI, concurrent SDB, and signs of autonomic dysfunction who will be randomly assign to one of two groups. Treatment will be administered for 8 days over a 2-week period. Both groups will be treated with nightly in-home CPAP over the 8 days. Lastly, individuals will be tested before, and after MIH as well as return to the laboratory 4 weeks later to undergo post-MIH autonomic, cardiovascular, and peripheral muscle function tests. Participants will return 4-weeks later to investigate if there is a sustained impact of therapeutic MIH on autonomic function and SDB. The dissemination of these outcomes could transform the approach to treating autonomic dysfunction and SDB in individuals with SCI. Therefore, this project will determine if MIH combined with CPAP can be used as prophylaxis for autonomic dysfunction in participants with SCI and autonomic dysfunction.

Eligibility

Inclusion Criteria:

  1. Age 18-60
  2. Motor incomplete spinal cord injury at or above the 6th thoracic vertebrae
  3. Signs or symptoms of autonomic dysfunction (this will be determined by the ADFSCI and ISAFSCI questions. The ADFSCI requires a score of 1 on questions 16 and 22, and the ISAFSCI requires a score of 1 on any parameter)
  4. Chronic injuries (> 1 year post injury)

Exclusion Criteria:

  1. Pregnant
  2. Smoker
  3. Drug addiction
  4. <18 or >60 years of age
  5. Complete spinal cord injury
  6. Spinal cord injury below the 6th thoracic vertebrae
  7. Insulin dependent diabetes
  8. Shift workers (ie disrupted circadian rhythm)
  9. Active skin breakdown or pressure sores

Study details
    Spinal Cord Injuries
    Autonomic Dysreflexia

NCT05351827

VA Office of Research and Development

26 January 2024

Step 1 Get in touch with the nearest study center
We have submitted the contact information you provided to the research team at {{SITE_NAME}}. A copy of the message has been sent to your email for your records.
Would you like to be notified about other trials? Sign up for Patient Notification Services.
Sign up

Send a message

Enter your contact details to connect with study team

Investigator Avatar

Primary Contact

  Other languages supported:

First name*
Last name*
Email*
Phone number*
Other language

FAQs

Learn more about clinical trials

What is a clinical trial?

A clinical trial is a study designed to test specific interventions or treatments' effectiveness and safety, paving the way for new, innovative healthcare solutions.

Why should I take part in a clinical trial?

Participating in a clinical trial provides early access to potentially effective treatments and directly contributes to the healthcare advancements that benefit us all.

How long does a clinical trial take place?

The duration of clinical trials varies. Some trials last weeks, some years, depending on the phase and intention of the trial.

Do I get compensated for taking part in clinical trials?

Compensation varies per trial. Some offer payment or reimbursement for time and travel, while others may not.

How safe are clinical trials?

Clinical trials follow strict ethical guidelines and protocols to safeguard participants' health. They are closely monitored and safety reviewed regularly.
Add a private note
  • abc Select a piece of text.
  • Add notes visible only to you.
  • Send it to people through a passcode protected link.