Overview
Developmental dyslexia affects 7% of school-age children (Male:Female ratio of 1.5:1) and incurs disadvantages in education and occupation. Scientific progress concerning the etiology of developmental dyslexia evidenced the complex gene-environment interaction. The DCDC2-READ1 deletion associates with reading skills and affects the magnocellular-dorsal stream in humans and animals. DCDC2 modifies neural activity within the excitatory pathways. The magnocellular-dorsal stream mediates the function of the attention network. Difficulties in spatial and temporal attention shifting impair letter-to-speech sound integration increasing neural noise. Action video games improve the efficiency of the magnocellular-dorsal stream. The aim of this cutting-edge, round trip translation study is threefold: 1.to unravel new insights behind the pathophysiology of developmental dyslexia, 2. to assess gene-environment interaction effects on developmental dyslexia endophenotypes, and 3. to identify useful clues to foster the identification of new, personalized treatments.
Eligibility
Inclusion Criteria
- 5-years old pre-readers,
- normal intelligence quotient,
- no main counter indications for magnetic resonance acquisition,
- no previous diagnosis of any neurodevelopmental disorders.
Exclusion Criteria:
- intelligence quotient below the average range,
- presence of counter indications for magnetic resonance acquisition,
- previous diagnosis of any neurodevelopmental disorders.