Image

Arginine Metabolism in Youth With Type 2 Diabetes

Arginine Metabolism in Youth With Type 2 Diabetes

Recruiting
12-20 years
All
Phase N/A

Powered by AI

Overview

Type 2 diabetes (T2D), once considered only "a disease of older ages," is now a significant public health concern in youth. Although it is characterized by insulin resistance and impaired insulin secretion, its precise etiology and pathogenesis are not yet fully understood. This study aims to (1) explore arginine metabolism in youth with T2D via safe, minimally invasive kinetic experiments using stable isotope tracers and targeted metabolomics, and (2) determine the effect of exogenous arginine administration on β-cell function in youth with T2D, potentially supporting the use of this safe, low-cost, and readily available nutrient to improve pediatric diabetes outcomes.

Description

In parallel with the youth obesity epidemic, type 2 diabetes (T2D) in youth is becoming a significant public health concern. The incidence of pediatric T2D increased by 50% during the past decade, and recent data show that T2D accounts for one in four newly-diagnosed diabetes cases in children. Youth with T2D have an aggressive disease course and a rapid decline in β-cell function, and many also have multiple cardiovascular disease risk factors at an early age. The disease is characterized by insulin resistance and impaired insulin secretion, but the molecular underpinnings of T2D are not yet fully elucidated. This study aims to uncover the role of arginine metabolism in the pathogenesis of youth with T2D and the effect of exogenous arginine administration on β-cell function in them.

Arginine is a known stimulant of insulin secretion in pancreatic β-cells. Nitric oxide (NO) is synthesized from arginine by NO synthase, and arginine stimulates insulin secretion in both NO-mediated and NO-independent mechanisms by stimulating guanylate cyclase, membrane depolarization, and metabolic by-products. The effects of arginine in pancreatic β-cells are dependent on the cells' available arginine concentration. Kinetic techniques using isotope tracer infusions and targeted metabolomics provide a unique opportunity to determine "intracellular" arginine availability and its relative contribution of various pathways to this pool. Such studies in adults with T2D have shown that arginine and NO play roles in the pathogenesis of T2D by affecting insulin secretion and insulin sensitivity. In the preliminary data on children with T2D, the investigators found that children with T2D had lower fasting arginine, citrulline (arginine precursor), and glutamine (citrulline precursor) levels. In this proposal, the investigators will seek kinetic validation of these hypothesis-generating observations to investigate the role of arginine metabolism in youth with T2D. Our central hypothesis is that youth with T2D have inadequate arginine availability (Aim 1), leading to suboptimal β-cell function, which can be restored by exogenous arginine administration (Aim 2). If our hypotheses are proven, arginine supplementation will play a clinically vital role in improving diabetes outcomes in this population as a safe, low-cost, and readily available nutrient.

Eligibility

Inclusion Criteria:

  1. Youth with type 2 diabetes and healthy controls who meet other inclusion criteria outlined below.
  2. Age and pubertal stage criteria (12- to 20-year-old girls who are postmenarchal, and 14- to 20-year-old boys who are at Tanner stage 5 genitalia),
  3. Additional criteria for youth with diabetes: i. diagnosis of T2D, and ii. diabetes duration between 3 months and 10 years.

Exclusion Criteria:

  1. Previous history of diabetic ketoacidosis (DKA)
  2. Poorly controlled diabetes defined as HbA1c >7.5%,
  3. Abnormal liver, thyroid, gonadal or adrenal functions,
  4. Renal insufficiency defined by eGFR (estimated glomerular filtration rate) <90 mL/min/1.73 m2,
  5. Any glucose lowering medications except metformin, insulin and liraglutide

(7) Any medication use that will likely to interfere amino acid metabolism, (8) Any hormonal replacement therapy, and (9) Pregnancy.

Study details
    Type 2 Diabetes

NCT05477134

Baylor College of Medicine

13 January 2025

Step 1 Get in touch with the nearest study center
We have submitted the contact information you provided to the research team at {{SITE_NAME}}. A copy of the message has been sent to your email for your records.
Would you like to be notified about other trials? Sign up for Patient Notification Services.
Sign up

Send a message

Enter your contact details to connect with study team

Investigator Avatar

Primary Contact

  Other languages supported:

First name*
Last name*
Email*
Phone number*
Other language

FAQs

Learn more about clinical trials

What is a clinical trial?

A clinical trial is a study designed to test specific interventions or treatments' effectiveness and safety, paving the way for new, innovative healthcare solutions.

Why should I take part in a clinical trial?

Participating in a clinical trial provides early access to potentially effective treatments and directly contributes to the healthcare advancements that benefit us all.

How long does a clinical trial take place?

The duration of clinical trials varies. Some trials last weeks, some years, depending on the phase and intention of the trial.

Do I get compensated for taking part in clinical trials?

Compensation varies per trial. Some offer payment or reimbursement for time and travel, while others may not.

How safe are clinical trials?

Clinical trials follow strict ethical guidelines and protocols to safeguard participants' health. They are closely monitored and safety reviewed regularly.
Add a private note
  • abc Select a piece of text.
  • Add notes visible only to you.
  • Send it to people through a passcode protected link.