Image

Evaluating the Impact of Computer-assisted X-ray Diagnosis and Other Triage Tools to Optimise Xpert Orientated Community-based Active Case Finding for TB and COVID-19

Recruiting
18 years of age
Both
Phase N/A

Powered by AI

Overview

Tuberculosis (TB) is now the commonest cause of death in many African countries. Globally, ~35% (almost 1 in 3) of TB cases are 'missed' (remain undiagnosed or undetected). In sub-Saharan Africa, 40-50% of the TB case burden remains undiagnosed within the community. These 'missed' TB cases (at primary care level) serve as a reservoir, which severely undermines TB control. With rapid advances in the development of TB screening tests, the investigators aim to determine the pragmatic utility of computer-assisted x-ray diagnosis (CAD). Recent data suggest that CAD performs on par with experienced radiologists to identify potential TB cases, hereby reducing the frequency at which Xpert tests are requested and helps to focus limited resources on the relevant cases. In addition, the investigators aim to test nascent screening technologies for TB diagnosis such as evaluating urine-based TB screening biosignatures. The COVID-19 pandemic has ravaged African peri-urban communities where TB is also common. With the pressing need to improve screening and diagnosis of COVID-19, the investigators plan to explore the potential for urine- and blood-based COVID-19 screening assays. Symptoms of COVID-19 and TB overlap, and limited affordability, as well as the stigma associated with both diseases, severely limits testing. Data are now urgently needed about the feasibility of co-screening and testing for TB and COVID-19. The utility of such an approach, if any, has not been studied in African communities.

Description

Tuberculosis (TB) is now the commonest cause of death in many African countries. Several factors drive this; however, transmission is the mechanism by which these risk factors translate into active TB. Globally, ~35% (almost 1 in 3) of TB cases are 'missed' (remain undiagnosed or undetected). In sub-Saharan Africa, 40-50% of the TB case burden remains undiagnosed within the community and ~30% of such cases are microscopically smear-positive. These 'missed' TB cases (at primary care level) serve as a reservoir, which severely undermines TB control. Thus, primary care and community-based case finding should be a critical component for TB control.

Detecting cases in the community, however, has been restricted by the lack of sensitive and user-friendly Point-of-Care (POC) diagnostic tools. To address this unmet need, in 2013 the investigators planned a programme of activities (sequential interlinked studies) with the overarching aim of optimising a model for Xpert-related community-based active case finding (ACF) for TB (XACT). By 2017, through the EDCTP-funded XACT-I study, the investigators solved the impasse of rapid POC diagnosis by showing that molecular Xpert-based community-based screening was effective in identifying missing TB cases in the peri-urban 'slums' of Cape Town and Harare using a mini-truck with a generator. However, such an approach was neither broadly affordable nor scalable. The investigators therefore derived a scalable model using portable battery-operated Xpert Edge installed within a low-cost (< US$) 15 000 Nissan panel van manned by two health care workers (thus making the ACF model affordable and scalable). This completed study, XACT-II, screened over 5 000 participants in the community. The model worked well and was more effective than smear microscopy. Based on these successes, and to translate the XACT concept into policy, the Wellcome Trust and UK MRC has funded the XACT-III study. Currently commenced, XACT-III was initiated as a multi-country demonstration project in four sub-Saharan African countries.

More recently, there have been rapid advances in the development of triage testing for TB, which refers to screening tests that are generally applied in a community-based setting (either at individual community or primary care clinic level). These tests have very high sensitivity (>95%) but modest specificity (>70%) as defined by TB-specific target product profiles. A forerunner TB-orientated triage test is computer-assisted x-ray diagnosis (CAD). This entails using artificial intelligence-enabled software to read a digital x-ray and produce a probability of TB within seconds. Recent data suggest that CAD performs on par with experienced radiologists to identify potential TB cases, hereby reducing the frequency at which Xpert tests are requested and helps to focus limited resources on the relevant cases. Although these data appear promising, the feasibility of this strategy in a pragmatic field setting has not been extensively tested. There are several other unanswered questions. Is the strategy of CAD combined with Xpert cost-effective and can it reduce Xpert usage without missing an unacceptable number of TB cases? The investigators will therefore determine the utility of CAD as a triage tool to further optimise the XACT model.

The COVID-19 pandemic, due to SARS-CoV-2, has ravaged African peri-urban communities where TB is also common. Symptoms of COVID-19 and TB overlap, and limited affordability, as well as the stigma associated with both diseases, severely limits testing. Data are now urgently needed about the feasibility of co-screening and testing for TB and COVID-19. The utility of such an approach, if any, has not been studied in African communities. As Xpert POC TB testing and x-rays for CAD will be performed in the proposed study, it affords a unique and easy opportunity to seamlessly screen for both diseases when appropriate.

Other nascent screening technologies are rapidly emerging for TB and COVID-19, including urine- and blood-based triage tests. XACT-19 provides a unique opportunity to collect the relevant samples and test new technologies in a pragmatic community-based setting.

In summary, the XACT-19 study results will have substantial implications for public health policy and practice and will likely define a new standard for community-based ACF for TB, and potentially COVID-19 in tandem.

Eligibility

Inclusion Criteria:

  • Participants willing to complete community-based symptom screening, finger-prick and venepuncture blood sampling, urine testing, and/or undergo TB and/or COVID-19 diagnostic testing.
  • Provision of informed consent.
  • Participant 18 years or above.
  • HIV-positive or negative participants will be included.

Exclusion Criteria:

  • Inability to provide informed consent (e.g., mentally impaired).
  • Participants who have completed TB treatment in the last two months, or who have self-presented to their local TB clinic and are currently being worked up for suspected TB.
  • Participants already diagnosed with active TB on treatment.
  • Participants unable to commit to at least a two-month follow-up.
  • Female participants who are pregnant or who refuse a urine pregnancy test.
  • Participants in the community who cannot access healthcare due to severe ill health or lack of access to the local clinic.

Study details

Tuberculosis, COVID-19, HIV Infections

NCT05220163

University of Cape Town

15 June 2024

Step 1 Get in touch with the nearest study center
What happens next?
  • You can expect the study team to contact you via email or phone in the next few days.
  • Sign up as volunteer  to help accelerate the development of new treatments and to get notified about similar trials.

You are contacting

Investigator Avatar

Primary Contact

site

FAQs

Learn more about clinical trials

What is a clinical trial?

A clinical trial is a study designed to test specific interventions or treatments' effectiveness and safety, paving the way for new, innovative healthcare solutions.

Why should I take part in a clinical trial?

Participating in a clinical trial provides early access to potentially effective treatments and directly contributes to the healthcare advancements that benefit us all.

How long does a clinical trial take place?

The duration of clinical trials varies. Some trials last weeks, some years, depending on the phase and intention of the trial.

Do I get compensated for taking part in clinical trials?

Compensation varies per trial. Some offer payment or reimbursement for time and travel, while others may not.

How safe are clinical trials?

Clinical trials follow strict ethical guidelines and protocols to safeguard participants' health. They are closely monitored and safety reviewed regularly.
Add a private note
  • abc Select a piece of text.
  • Add notes visible only to you.
  • Send it to people through a passcode protected link.