Image

Pregnancy Exercise Mode Effect on Childhood Obesity

Recruiting
18 - 40 years of age
Female
Phase N/A

Powered by AI

Overview

The overall objective of this proposal is to conduct a longitudinal prospective study of overweight/obese (OW/OB) pregnant women and their offspring to determine which prenatal exercise mode will have the greatest impact on maternal and infant cardiometabolic health. This information may lead to clinical practice recommendations that improve childhood health. This randomized controlled trial will recruit 284 OW/OB pregnant women randomized to an exercise intervention (aerobic (AE), resistance (RE), or aerobic+resistance exercise (AERE)) or to no exercise; their infants will be measured at 1, 6, and 12 months of age. This design will test our central hypothesis that AERE and RE training during pregnancy will improve maternal and offspring cardiometabolic outcomes to a greater extent than AE alone. This hypothesis will be tested with two specific aims:

Aim 1. Determine the influence of different exercise modes during OW/OB pregnancy on infant cardiometabolic health and growth trajectories. Hypothesis: AE, RE, and AERE by OW/OB pregnant women will improve offspring neuromotor and cardiometabolic measures at 1, 6, and 12 months postpartum (e.g. decreased %body fat, BMI z-score, heart rate [HR], non-HDL, and C-Reactive Protein (CRP); increased insulin sensitivity) compared to infants of OW/OB pregnant women that do not exercise; AERE and RE will have the greatest impact on improving infant measures.

Aim 2. Determine the most effective exercise mode in OW/OB pregnancy on improving maternal cardiometabolic health outcomes. Hypothesis: AE, RE, and AERE by OW/OB pregnant women will improve both maternal cardiometabolic health measures (e.g. decreased BMI z-score, non-HDL, % body fat, HR, weight gain) across pregnancy (16-36 weeks' gestation) and overall pregnancy outcomes (e.g. lower incidence of gestational diabetes, pre-eclampsia, hypertension during gestation) compared to OW/OB pregnant women that do not exercise; AERE and RE will have the greatest impact on improving maternal health measures, with the AERE group having the highest compliance.

The proposed study will be the first to provide an understanding of the influence of maternal exercise modes on the cardiometabolic health and growth trajectories of offspring who are at increased risk due to maternal OW/OB. This work will have a significant impact on reducing the cycle of OB, potentially providing the earliest and most efficacious intervention to decrease or prevent OB in the next generation.

Description

Many public health initiatives in the United States, including Healthy People 2020, have goals that include reducing obesity (OB), metabolic dysfunction, and risk of cardiovascular disease (CVD). Studies such as the Bogalusa project have now demonstrated that overweightness (OW), beginning as early as age five, is predictive of adult CVD. In fact, the onset of OW/OB and CVD may begin in the intrauterine period, and infant birth weight and weight gain are strongly related to OB in childhood and beyond. OW/OB mothers and their offspring exhibit increased morbidity and mortality; the American College of Obstetricians and Gynecologists (ACOG) has developed guidelines geared toward reducing maternal OW/OB through exercise. However, few studies have focused on how such exercise interventions during pregnancy impact short and long-term child health outcomes. Furthermore, little is known regarding the influence of different modes of antenatal exercise upon maternal and offspring health outcomes.

The long-term goal of this study is to attenuate child- and adulthood OB and CVD risk by identifying the most effective and easily implemented maternal exercise interventions. The investigators have shown that maternal aerobic exercise (AE) in women of all BMIs favorably impacts maternal cholesterol and LDL levels, which are predictive of infant weight. Furthermore, maternal AE is associated with decreased fetal abdominal circumference (AC), lower body fat percentage at one month, and improved infant neuromotor skills. Our preliminary data for pregnant women of all BMIs suggests that resistance exercise (RE) confers similar benefits to infants at one month as compared to AE, plus improvements such as decreased BMI z-scores, increased metabolomic signatures for glucose use, and decreased metabolites of inflammatory pathways. The most striking finding from this preliminary work is that adding RE to AE improved outcomes for both mothers and infants. Thus, the COMBINATION of aerobic and resistance exercise (AERE) not only had better maternal and one month infant outcomes (versus AE alone), but AERE groups had the best compliance. The positive changes were most pronounced in the infants of OW/OB women. A more comprehensive, longitudinal study geared toward OW/OB mothers is needed to confirm our preliminary work and to assess the persistence of exercise impacts through the infants' first year of life.

The overall objective of this proposal is to conduct a longitudinal prospective study of OW/OB pregnant women and their offspring to determine which antenatal maternal exercise mode(s) will have the greatest impact on maternal and infant cardiometabolic health. This information may lead to modified clinical practice recommendations that improve health in childhood and possibly beyond. This randomized controlled trial will recruit 284 OW/OB pregnant women randomized to an exercise intervention (AE, RE, AERE) or to no exercise (usual care); their infants will be measured at 1, 6, and 12 months of age. This rigorous design will test our central hypothesis that AERE and RE exercise training during pregnancy will, in OW/OB women, improve maternal and offspring cardiometabolic outcomes to a greater extent than AE alone. The investigators will test this hypothesis with two specific aims:

Aim 1. Determine the influence of different exercise modes during OW/OB pregnancy on infant cardiometabolic health and growth trajectories. Hypothesis: AE, RE, and AERE by OW/OB pregnant women will improve offspring neuromotor and cardiometabolic measures at 1, 6, and 12 months postpartum (e.g. decreased BMI z-score, body fat %, non-HDL, heart rate, and C-Reactive Protein (CRP); increased insulin sensitivity) compared to infants of OW/OB pregnant women that do not exercise; AERE and RE will have the greatest impact on improving infant measures.

Aim 2. Determine the most effective exercise mode in OW/OB pregnancy on improving maternal cardiometabolic health outcomes. Hypothesis: AE, RE, and AERE by OW/OB pregnant women will improve both maternal cardiometabolic health measures (e.g. decreased BMI z-score, body fat %, HR, non-HDL, weight gain) across pregnancy (~13 to ~40 weeks gestation) and overall pregnancy outcomes (e.g. lower incidence of gestational diabetes, pre-eclampsia, hypertension during gestation) compared to OW/OB pregnant women that do not exercise; AERE and RE will have the greatest impact on improving maternal health measures, with the AERE group having the highest compliance with improved health outcomes.

The proposed innovative study will be the first to provide a critical understanding of the influence of antenatal exercise modes upon the cardiometabolic health and growth trajectories of offspring who are at increased risk due to maternal OW/OB. This work will have a significant impact on reducing the cycle of OB and CVD, potentially providing the earliest and most efficacious intervention to attenuate or prevent OB and CVD in the next generation.

Eligibility

Inclusion Criteria:

  • Age: 18 to 40 years old
  • BMI between ≥ 25
  • Pregnancy: Singleton; ≤ 16 weeks gestation
  • Clearance by Obstetric provider for exercise

Exclusion Criteria:

  • Age: ≤ 17.9 or ≥ 41 years of age
  • BMI <25
  • Multi fetal pregnancy
  • Obstetric Provider does not provide clearance for exercise
  • Unable or Unwilling to provide consent
  • Inability to communicate with members of study team, despite use of interpreter
  • Medical Conditions (e,g. HIV/Aids, Cancer, Type 1 or 2 Diabetes, Untreated Hypertension, Thyroid Disorders)
  • Use of tobacco products, alcohol, recreational drugs, or medications (oral hypertensive, insulin)
  • Unable to provide phone or email contact

Study details

Pregnancy, Overweight and Obesity

NCT04805502

East Carolina University

25 January 2024

Step 1 Get in touch with the nearest study center
What happens next?
  • You can expect the study team to contact you via email or phone in the next few days.
  • Sign up as volunteer  to help accelerate the development of new treatments and to get notified about similar trials.

You are contacting

Investigator Avatar

Primary Contact

site

FAQs

Learn more about clinical trials

What is a clinical trial?

A clinical trial is a study designed to test specific interventions or treatments' effectiveness and safety, paving the way for new, innovative healthcare solutions.

Why should I take part in a clinical trial?

Participating in a clinical trial provides early access to potentially effective treatments and directly contributes to the healthcare advancements that benefit us all.

How long does a clinical trial take place?

The duration of clinical trials varies. Some trials last weeks, some years, depending on the phase and intention of the trial.

Do I get compensated for taking part in clinical trials?

Compensation varies per trial. Some offer payment or reimbursement for time and travel, while others may not.

How safe are clinical trials?

Clinical trials follow strict ethical guidelines and protocols to safeguard participants' health. They are closely monitored and safety reviewed regularly.
Add a private note
  • abc Select a piece of text.
  • Add notes visible only to you.
  • Send it to people through a passcode protected link.