Image

Assess the Clinical Effectiveness in AI Prioritising CT Heads

Assess the Clinical Effectiveness in AI Prioritising CT Heads

Recruiting
18 years and older
All
Phase N/A

Powered by AI

Overview

Non-Contrast Computed Tomography (NCCT) of the head is the most common imaging method used to assess patients attending the Emergency Department (ED) with a wide range of significant neurological presentations including trauma, stroke, seizure and reduced consciousness. Rapid review of the images supports clinical decision-making including treatment and onward referral.

Radiologists, those reporting scans, often have significant backlogs and are unable to prioritise abnormal images of patients with time critical abnormalities. Similarly, identification of normal scans would support patient turnover in ED with significant waits and pressure on resources.

To address this problem, Qure.AI has worked to develop the market approved qER algorithm, which is a software program that can analyse CT head to identify presence of abnormalities supporting workflow prioritisation.

This study will trial the software in 4 NHS hospitals across the UK to evaluate the ability of the software to reduce the turnaround time of reporting scans with abnormalities that need to be prioritised.

Description

Study background:

Emergency Departments (ED) across the UK are overburdened with increasing patient demand, radiology staff shortages and rising patient wait times. Head injuries are a frequent cause of emergency attendance in the UK with computed tomography(CT) scans usually the first imaging tests to diagnose head injuries and strokes.

A report issued by National Institute of Health and Care Excellence (NICE), confirms that each year 1.4 million people attend emergency departments in England and Wales with head injury. Among the 200,000 patients admitted annually, one-fifth of them suffer from a Traumatic Brain Injury with skull fracture or evidence of brain damage. Head injury is the most common cause of death and disability in people up to the age of 40. Early detection and prompt treatment is vital to save lives and minimise risk of disability, according to the NICE guidelines of Head injury: assessment and early management. Head CT scans are the gold standard for diagnosing these and it is critical that these are performed and reported by Radiologists in line with NICE guidelines.

The potential applications of AI in radiology go well beyond image analysis for diagnostic and prognostic opportunities. It is becoming increasingly clear that AI algorithms have the potential to improve productivity, operational efficiency, and accuracy in diagnostic radiology. AI tools are being developed to aide diagnosis and enhance processes at multiple point in the radiology workflow including:

(a) protocolling the prioritised scan,(b) clinical decision support systems for detection of critical findings, (c) worklist priority adjustment via AI results, and (d) reducing turnaround time through worklist prioritisation and semiautomated structures reporting. The adoption of AI tools is dependent on the demonstration of a tangible effect on patient care and improvement in radiologist workflow.

Thus, in this study, we aim to assess whether real-world implementation of an AI tool which augments (b), (c) and (d) of the imaging life cycle would affect turnaround times.

qER medical device:

qER, a CE Class II approved medical software device, detects, and localizes the presence of six target abnormalities - intracranial haemorrhage, cranial fracture, midline shift, mass effect, atrophy and hypodensities suggestive of infarcts in non-contrast Head-CT scans. A priority status is assigned if any one of the target abnormalities (intracranial haemorrhage, cranial fracture, midline shift or mass effect) is detected by the software, and the user will be able to view a single summary slice listing all the target abnormalities found by qER on the CT scan followed by all slices in scan with the overlay of above abnormalities localization. Alternately, if none of the target abnormalities are detected, the output will indicate that the software has analysed the image and identified no critical findings. qER reports are intended to support certified radiologists and/or licensed medical practitioners for clinical decision making. It is a support tool and, when used with original scans, can assist the clinician to improve efficiency, accuracy, and turnaround time in reading head CTs. It is not to be used to provide medical advice, determine treatment plan, or recommend a course of action to the patient.

Study design:

A multi-centre stepped wedged cluster randomised study will be conducted in 4 NHS hospitals over a 13-month period. Hospitals will be identified and initiated into the qER solution with a 30-day implementation period. The order in which sites will receive the qER intervention will be determined by computer-based randomisation. The stepped wedge design allows delivery of the intervention at an organisational level with evaluation of outcome measures at a patient level. Structuring the implementation through a staged activation in a random order provides important methodological advantages for both qualitative and quantitative elements of the study. The design allows control of adoption bias and adjust for time-based changes in the background patient characteristics at a patient level.

All patients under this pathway would receive an AI reading, and no additional or different tests will be performed as a result of the AI findings. The turnaround time will be the interval between the time the scan was taken to the time when the final scan report becomes available and will be measured in minutes. When qER assistance is used for reporting Head-CT scans and if there is a difference between the output of the qER and the radiologist, the latter will be considered as final for further patient management.

Primary objective:

The primary objective is to assess if qER based reporting and triage significantly reduce turnaround time (TAT) of critical NCCT head reporting for patients attending the emergency department.

Secondary objective(s):

  • To assess utility of qER to support emergency department pathways for patients requiring NCCT head and radiology reporting workflow.
  • To assess the safety of qER at identifying patients with critical findings on NCCT heads.
  • To evaluate the technical performance of qER.
  • To conduct a Heath Economic, cost utility analysis of qER.

Eligibility

Inclusion Criteria:

  • Individuals undergoing Head CT scan at the ED / A&E (Accident and Emergency Services).
  • Non-contrast axial CT scan series with consistently spaced axial slices.
  • Soft reconstruction kernel covering the complete Brain.
  • Maximum slice thickness of 6mm.

Exclusion Criteria:

        There are no explicit exclusion criteria for qER as all scans in inclusion criteria will be
        processed by qER. Exclusion criteria are implicit within the inclusion criteria listed
        above.

Study details
    Trauma
    Brain
    Mass Lesion
    Skull Fractures
    Hemorrhage
    Intracranial
    Midline Deviation
    Stroke
    Ischemic
    Encephalomalacia

NCT06027411

Guy's and St Thomas' NHS Foundation Trust

25 January 2024

Step 1 Get in touch with the nearest study center
We have submitted the contact information you provided to the research team at {{SITE_NAME}}. A copy of the message has been sent to your email for your records.
Would you like to be notified about other trials? Sign up for Patient Notification Services.
Sign up

Send a message

Enter your contact details to connect with study team

Investigator Avatar

Primary Contact

  Other languages supported:

First name*
Last name*
Email*
Phone number*
Other language

FAQs

Learn more about clinical trials

What is a clinical trial?

A clinical trial is a study designed to test specific interventions or treatments' effectiveness and safety, paving the way for new, innovative healthcare solutions.

Why should I take part in a clinical trial?

Participating in a clinical trial provides early access to potentially effective treatments and directly contributes to the healthcare advancements that benefit us all.

How long does a clinical trial take place?

The duration of clinical trials varies. Some trials last weeks, some years, depending on the phase and intention of the trial.

Do I get compensated for taking part in clinical trials?

Compensation varies per trial. Some offer payment or reimbursement for time and travel, while others may not.

How safe are clinical trials?

Clinical trials follow strict ethical guidelines and protocols to safeguard participants' health. They are closely monitored and safety reviewed regularly.
Add a private note
  • abc Select a piece of text.
  • Add notes visible only to you.
  • Send it to people through a passcode protected link.