Image

The Effects of Telerehabilitation-Based Spinal Stabilization Exercises in Stroke Patients

Recruiting
50 - 75 years of age
Both
Phase N/A

Powered by AI

Overview

Stroke is a disease that causes sudden focal neurologic function loss lasting longer than 24 hours due to infarction or hemorrhage in relevant part of the central nervous system. Stroke causes a variety of physiological and psychological symptoms. These symptoms can negatively affect physical activity level and fatigue. Spinal stabilization exercises based on the basic principles of motor learning improves the coordination and endurance of the body muscles by increasing kinesthetic awareness, so this exercise approach can be used to strengthen body stability. The aim of this study is to investigate the effects of telerehabilitation based spinal stabilization exercises on physical activity level and fatigue in community dwelling stroke patients.

Description

Stroke is defined as a neurological disorder that causes acute focal damage to the Central Nervous System due to a vascular cause. Ischemic stroke and hemorrhagic stroke are the two most fundamental types of stroke. Approximately 80% of patients suffer from ischemic stroke, whereas 20% suffer from hemorrhagic stroke. Ischemic strokes usually develop due to arterial occlusions, rarely cerebral veins or venous sinus occlusions. Hemorrhagic strokes develop as intracerebral or subarachnoid hemorrhages.

It happens as a result of a ruptured aneurysm or a ruptured cerebral artery. The clinical presentation after stroke differs according to the affected artery, underlying etiology, localization and size of the affected area. Motor, sensory and cognitive problems such as paresis, spasticity, gait and balance disorders, sensory and visual problems, fatigue, aphasia, depression, apraxia, agnosia, and amnesia may occur after stroke. These symptoms reduce the quality of life of patients and negatively affect daily living activities. In addition, as a result of all these problems, the physical activity levels of the patients decrease. These post-stroke symptoms reveal the need for rehabilitation in these patients. In the literature, there are many rehabilitation approaches after stroke. The main purpose of these approaches is to improve the functional level of patients and to ensure their independence in activities of daily living at the highest possible level.

Spinal stabilization exercises improve trunk stabilization by increasing the activation of the core muscles that wrap the trunk like a corset. The aim of spinal stabilization exercises is to strengthen core muscles, support the vertebral column, provide optimal posture by increasing kinesthetic awareness, and facilitate movements with breathing. In the literature, it has been shown that spinal stabilization exercises improve balance and gait, reduce fatigue, increase the trunk control of the patients, increase the strength of the core muscles, decrease the fear of falling, improve respiratory functions and have positive effects on activities of daily living in stroke patients.

Telerehabilitation has been one of the important research areas of stroke rehabilitation in recent years. It not only provides a treatment opportunity for patients with limited access to rehabilitation centers, but also provides an opportunity to follow-up the rehabilitation of the patients treated in the rehabilitation center after discharge. Physiotherapists reach patients with telecommunication devices (smartphone, tablet, computer) and provide online rehabilitation services.

In this study, it is aimed to increase trunk stabilization with spinal stabilization exercises. The development of trunk stabilization will reduce the load on both the trunk and the extremities, thus reducing the energy expenditure of the patients while performing their daily living activities. As a result, it is predicted that there may be an increase in the functional activity levels of the patients and a decrease in their fatigue. In the literature, there is no study in which spinal stabilization exercises were applied on the basis of telerehabilitation in stroke patients. In addition, there is no study in the literature investigating the effect of spinal stabilization exercises on the physical activity level of stroke patients. This trial is original in these respects. In this study, the effects of telerehabilitation-based spinal stabilization exercises on physical activity level and fatigue in stroke patients will be investigated.

Method: This study was planned as a mixed-type research design in which quantitative and qualitative research methods were used together to investigate the effects of telerehabilitation-based spinal stabilization exercises on physical activity level and fatigue in chronic stroke patients. In the quantitative evaluations of the study, primarily physical activity level and fatigue; secondarily, functional capacity, trunk involvement and quality of life will be evaluated. In the qualitative phase of the study, interviews will be conducted about the patients' experiences with physical activity and fatigue before and after the exercise program. In addition, after the exercise program, the patients will be interviewed about their experiences with the exercises.

The sample size of the study was calculated using the G*Power 3.1 software, considering the study of Yoon et al. It was determined that a total of 24 patients, 12 for each exercise group, should be taken. However, considering the possible data losses, it is planned to include a total of 30 patients, 15 patients in each group, into the study.

Patients will be placed into groups by block randomization method. Also, this study is planned as a single-blind study. The patients in the study group will be given telerehabilitation-based spinal stabilization exercises. The patients in the control group will be given face-to-face spinal stabilization exercises.

Kadriye Armutlu will make the randomization. Evaluation of the patients will be done by Ayla Fil Balkan (AFB). The treatment programs of the patients will be implemented by Ali Naim Ceren (ANC). AFB will make the evaluations without knowing which group the patients are in. Thus, it will be ensured that the study is single-blind. Also, to avoid bias, the ANC will not be informed of the patients' evaluation results until the study is finished.

A qualitative interview will be conducted first with all patients who meet the inclusion criteria. After the qualitative interview, all patients will be fitted with a smart wristband to determine their physical activity level, and they will be asked to stay on the wristband for 7 days, including while they sleep (except when they take a bath). At the end of these 7 days, the wristband will be taken from the patients and the remaining evaluations will be made. After the evaluations are over, the patients will be directed to the physiotherapist who will implement the exercise program. Before starting the treatment programs, the physiotherapist will explain the activation methods of the transversus abdominus and multifidus muscles to the patients face-to-face for a total of 3 days, every other day. In this direction, the activation of the transversus abdominus muscle, which the patients can easily feel and palpate with their hands, will be taught. At the end of this period, if there are patients who cannot contract the transversus abdominus muscle correctly, these patients will be dropped out of the study. Afterwards, spinal stabilization exercise programs will be started online with the patients in the telerehabilitation group and face-to-face with the patients in the control group. In both groups, the exercise programs will last for 1 hour, 3 days a week, for a total of 6 weeks. Fatigue, functional capacity, trunk control, trunk endurance and quality of life evaluations will be performed on all patients 1 day after the exercise program is completed, and smart wristbands will be placed on the patients after the evaluation. Likewise, it will be required to keep the wristband on for 7 days (except for the time they take a bath), including while sleeping. At the end of these 7 days, the smart wristbands will be taken from the patients and a qualitative interview will be conducted.

Eligibility

Inclusion Criteria:

  • Aged between 50-75 years
  • Having an ischemic stroke with anterior circulation involvement
  • Getting a score of 24 or higher on the Mini Mental Test
  • Ambulation in indoor and outdoor environments with or without a walking aid (walker, cane or tripod)
  • At least 1 year has passed since the stroke event
  • To have the necessary infrastructure (internet) and equipment (smartphone, tablet or computer) for the telerehabilitation application
  • Not participating in any physiotherapy program in the last 6 months
  • Volunteering to participate in the study

Exclusion Criteria:

  • Having a history of more than one stroke
  • Having a known orthopedic, psychiatric or other neurological disease
  • Having a history of surgery involving the lower extremities, abdominal region or gait
  • Known presence of dementia
  • Presence of aphasia and apraxia

Study details

Stroke

NCT05306522

Hacettepe University

7 March 2024

Step 1 Get in touch with the nearest study center
What happens next?
  • You can expect the study team to contact you via email or phone in the next few days.
  • Sign up as volunteer  to help accelerate the development of new treatments and to get notified about similar trials.

You are contacting

Investigator Avatar

Primary Contact

site

FAQs

Learn more about clinical trials

What is a clinical trial?

A clinical trial is a study designed to test specific interventions or treatments' effectiveness and safety, paving the way for new, innovative healthcare solutions.

Why should I take part in a clinical trial?

Participating in a clinical trial provides early access to potentially effective treatments and directly contributes to the healthcare advancements that benefit us all.

How long does a clinical trial take place?

The duration of clinical trials varies. Some trials last weeks, some years, depending on the phase and intention of the trial.

Do I get compensated for taking part in clinical trials?

Compensation varies per trial. Some offer payment or reimbursement for time and travel, while others may not.

How safe are clinical trials?

Clinical trials follow strict ethical guidelines and protocols to safeguard participants' health. They are closely monitored and safety reviewed regularly.
Add a private note
  • abc Select a piece of text.
  • Add notes visible only to you.
  • Send it to people through a passcode protected link.