Image

Molecular Biological and Moleculargenetic Monitoring of Therapy After Kidney Transplantation

Recruiting
18 years of age
Both
Phase N/A

Powered by AI

Overview

Molecular monitoring is conducted in blood cells, plasma samples, urine samples and/or tissue from patients after kidney transplantation. In the present study the investigators examine the hypothesis that noninvasive diagnostic molecular monitoring can improve the outcome after transplantation.

Routine clinical and laboratory data from serum and urine are evaluated at baseline and after 0-1-2-3-4-12-16-52 weeks and 1-2-3-4-5-6-7-8-9-10 years after kidney transplantation. Mononuclear cells were obtained from the blood and transcripts of several diagnostic genes (including GATA3 (Trans-acting T-cell-specific transcription factor3), GATA4 (Trans-acting T-cell-specific transcription factor4), GAPDH (Glyceraldehyde 3-phosphate dehydrogenase), TRPC3 (Transient receptor potential cononical type3), TRPC6 (Transient receptor potential cononical type6), granzyme B, perforin, FOXP3 (Forkhead box P3), ISG15 (Interferon-stimulated gene 15), Mx1 (Interferon-induced GTP-binding protein), MMP3 (Matrix metalloproteinase-3), MMP9 (Matrix metalloproteinase-9), long-non-coding RNA, and others) are quantified using standard quantitative RT-PCR (Reverse transcription polymerase chain reaction) techniques. Proteomic analysis were performed in plasma and urine samples. Polymorphisms of selected genes are analyzed using standard techniques. Data are analyzed by descriptive statistics. Differences between groups were analyzed using Mann-Whitney test or Kruskal-Wallis-test and Dunn's multiple comparison post-test, as appropriate. Associations between variables are analyzed using regression analyses. Contingency tables are analyzed using Fisher's exact test.

Description

Molecular monitoring is conducted in blood cells, plasma samples, urine samples and/or tissue from recipients after kidney transplantation and donors. In the present study the investigators examine the hypothesis that noninvasive diagnostic molecular monitoring can improve the outcome after transplantation.

Routine clinical and laboratory data from serum and urine are evaluated at baseline and after 0-1-2-3-4-12-16-52 weeks and 1-2-3-4-5-6-7-8-9-10 years, after kidney transplantation. Mononuclear cells were obtained from the blood and transcripts of several diagnostic genes (including GATA3 (Trans-acting T-cell-specific transcription factor3), GATA4 (Trans-acting T-cell-specific transcription factor4), GAPDH (Glyceraldehyde 3-phosphate dehydrogenase), TRPC3 (Transient receptor potential cononical type3), TRPC6 (Transient receptor potential cononical type6), granzyme B, perforin, FOXP3 (Forkhead box P3), ISG15 (Interferon-stimulated gene 15), Mx1 (Interferon-induced GTP-binding protein), MMP3 (Matrix metalloproteinase-3), MMP9 (Matrix metalloproteinase-9), long-non-coding RNA, and others) are quantified using standard quantitative RT-PCR (Reverse transcription polymerase chain reaction) techniques. Proteomic analysis were performed in plasma and urine samples. Polymorphisms of selected genes are analyzed using standard techniques.

Eligibility

Inclusion Criteria:

  • Patients after kidney transplantation, male, female, informed consent

Exclusion Criteria:

  • Deny of informed consent

Study details

Transplantation Infection, Kidney Diseases

NCT01515605

Odense University Hospital

25 January 2024

Step 1 Get in touch with the nearest study center
What happens next?
  • You can expect the study team to contact you via email or phone in the next few days.
  • Sign up as volunteer  to help accelerate the development of new treatments and to get notified about similar trials.

You are contacting

Investigator Avatar

Primary Contact

site

FAQs

Learn more about clinical trials

What is a clinical trial?

A clinical trial is a study designed to test specific interventions or treatments' effectiveness and safety, paving the way for new, innovative healthcare solutions.

Why should I take part in a clinical trial?

Participating in a clinical trial provides early access to potentially effective treatments and directly contributes to the healthcare advancements that benefit us all.

How long does a clinical trial take place?

The duration of clinical trials varies. Some trials last weeks, some years, depending on the phase and intention of the trial.

Do I get compensated for taking part in clinical trials?

Compensation varies per trial. Some offer payment or reimbursement for time and travel, while others may not.

How safe are clinical trials?

Clinical trials follow strict ethical guidelines and protocols to safeguard participants' health. They are closely monitored and safety reviewed regularly.
Add a private note
  • abc Select a piece of text.
  • Add notes visible only to you.
  • Send it to people through a passcode protected link.