Image

The Predictive Capacity of Machine Learning Models for Progressive Kidney Disease in Individuals With Sickle Cell Anemia

The Predictive Capacity of Machine Learning Models for Progressive Kidney Disease in Individuals With Sickle Cell Anemia

Recruiting
18-65 years
All
Phase N/A

Powered by AI

Overview

This is a multicenter prospective, longitudinal cohort study which will evaluate the predictive capacity of machine learning (ML) models for progression of CKD in eligible patients for a minimum of 12 months and potentially for up to 4 years.

Description

Sickle cell disease (SCD) is characterized by a vasculopathy affecting multiple end organs, with complications including ischemic stroke, pulmonary hypertension, and chronic kidney disease (CKD). Albuminuria, an early measure of glomerular injury and a manifestation of CKD, is common in SCD and predicts progressive kidney disease. Kidney function decline is faster in SCD patients than in the general African American population. The prevalence of rapid decline, commonly defined as an estimated glomerular filtration rate (eGFR) decline of >3 mL/min/1.73 m2 per year, is ~ 31% in SCD, 3-fold higher than in the general population. Furthermore, high-risk Apolipoprotein 1 (APOL1) variants are associated with an increased risk of albuminuria and progression of CKD in SCD. It is well recognized that kidney disease, regardless of severity, is associated with increased mortality in SCD. The investigators have recently observed that rapid eGFR decline is also independently associated with increased mortality in SCD. Early identification of patients at risk for progression of CKD is important to address potentially modifiable risk factors, slow eGFR decline and reduce mortality.

The investigators have previously reported that machine learning (ML) models can identify patients at high risk for rapid decline in kidney function. In this study, the investigators propose the conduct of a prospective, multi-center study to build a ML-based predictive model for progression of CKD in adults with SCD. A model with high predictive capacity for progression of CKD not only affords risk-stratification, but also offers opportunities to modify known risk factors in hopes of attenuating kidney function loss and decreasing mortality risk.

The overall hypothesis is that ML models utilizing clinical and laboratory characteristics, additional biomarkers and genetic assessments have a higher predictive capacity for progression of CKD than persistent albuminuria alone in adults with sickle cell anemia.

Eligibility

Inclusion Criteria:

  1. HbSS or HbSβ0 thalassemia, 18 - 65 years old;
  2. non-crisis, "steady state" with no acute pain episodes requiring medical contact in preceding 4 weeks;
  3. ability to understand the study requirements.

Exclusion Criteria:

  1. pregnant at enrollment;
  2. poorly controlled hypertension;
  3. long-standing diabetes with suspicion for diabetic nephropathy;
  4. connective tissue disease such as systemic lupus erythematosus (SLE);
  5. polycystic kidney disease or glomerular disease unrelated to SCD;
  6. stem cell transplantation;
  7. untreated human immunodeficiency virus (HIV), hepatitis B or C infection; h) history of cancer in last 5 years; i) End-stage renal disease (ESRD) on chronic dialysis; j) prior kidney transplantation.

Study details
    Sickle Cell Disease
    Kidney Diseases
    Chronic

NCT05214105

University of Tennessee

25 January 2024

Step 1 Get in touch with the nearest study center
We have submitted the contact information you provided to the research team at {{SITE_NAME}}. A copy of the message has been sent to your email for your records.
Would you like to be notified about other trials? Sign up for Patient Notification Services.
Sign up

Send a message

Enter your contact details to connect with study team

Investigator Avatar

Primary Contact

  Other languages supported:

First name*
Last name*
Email*
Phone number*
Other language

FAQs

Learn more about clinical trials

What is a clinical trial?

A clinical trial is a study designed to test specific interventions or treatments' effectiveness and safety, paving the way for new, innovative healthcare solutions.

Why should I take part in a clinical trial?

Participating in a clinical trial provides early access to potentially effective treatments and directly contributes to the healthcare advancements that benefit us all.

How long does a clinical trial take place?

The duration of clinical trials varies. Some trials last weeks, some years, depending on the phase and intention of the trial.

Do I get compensated for taking part in clinical trials?

Compensation varies per trial. Some offer payment or reimbursement for time and travel, while others may not.

How safe are clinical trials?

Clinical trials follow strict ethical guidelines and protocols to safeguard participants' health. They are closely monitored and safety reviewed regularly.
Add a private note
  • abc Select a piece of text.
  • Add notes visible only to you.
  • Send it to people through a passcode protected link.